These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32040315)

  • 1. Accurate SCC-DFTB Parametrization for Bulk Water.
    Lourenço MP; Dos Santos EC; Pettersson LGM; Duarte HA
    J Chem Theory Comput; 2020 Mar; 16(3):1768-1778. PubMed ID: 32040315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCC-DFTB parameters for simulating hybrid gold-thiolates compounds.
    Fihey A; Hettich C; Touzeau J; Maurel F; Perrier A; Köhler C; Aradi B; Frauenheim T
    J Comput Chem; 2015 Oct; 36(27):2075-87. PubMed ID: 26280464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Improved Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) Set of Parameters for Simulation of Bulk and Molecular Systems Involving Titanium.
    Dolgonos G; Aradi B; Moreira NH; Frauenheim T
    J Chem Theory Comput; 2010 Jan; 6(1):266-78. PubMed ID: 26614337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water Multilayers on TiO
    Selli D; Fazio G; Seifert G; Di Valentin C
    J Chem Theory Comput; 2017 Aug; 13(8):3862-3873. PubMed ID: 28679048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate SCC-DFTB Parametrization of Liquid Water with Improved Atomic Charges and Iterative Boltzmann Inversion.
    Cinq N; Simon A; Louisnard F; Cuny J
    J Phys Chem B; 2023 Sep; 127(35):7590-7601. PubMed ID: 37603798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding.
    Fox H; Newman KE; Schneider WF; Corcelli SA
    J Chem Theory Comput; 2010 Feb; 6(2):499-507. PubMed ID: 26617305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the SCC-DFTB method to neutral and protonated water clusters and bulk water.
    Goyal P; Elstner M; Cui Q
    J Phys Chem B; 2011 May; 115(20):6790-805. PubMed ID: 21526802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the SCC-DFTB method to H+(H2O)6, H+(H2O)21, and H+(H2O)22.
    Choi TH; Jordan KD
    J Phys Chem B; 2010 May; 114(20):6932-6. PubMed ID: 20433189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions.
    Choi TH; Liang R; Maupin CM; Voth GA
    J Phys Chem B; 2013 May; 117(17):5165-79. PubMed ID: 23566052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method.
    Xie L; Liu H
    J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Consistent Charge Density-Functional Tight-Binding Parametrization for Pt-Ru Alloys.
    Shi H; Koskinen P; Ramasubramaniam A
    J Phys Chem A; 2017 Mar; 121(12):2497-2502. PubMed ID: 28267337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons.
    Gaus M; Chou CP; Witek H; Elstner M
    J Phys Chem A; 2009 Oct; 113(43):11866-81. PubMed ID: 19778029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DFTB Simulation of Charged Clusters Using Machine Learning Charge Inference.
    Guibourg P; Dontot L; Anglade PM; Gervais B
    J Chem Theory Comput; 2024 May; 20(9):4007-4018. PubMed ID: 38690586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Properties of Metal-Organic Frameworks at Elevated Thermal Conditions via a Combined Density Functional Tight Binding Molecular Dynamics (DFTB MD) Approach.
    Purtscher FRS; Christanell L; Schulte M; Seiwald S; Rödl M; Ober I; Maruschka LK; Khoder H; Schwartz HA; Bendeif EE; Hofer TS
    J Phys Chem C Nanomater Interfaces; 2023 Jan; 127(3):1560-1575. PubMed ID: 36721770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parametrization of the SCC-DFTB Method for Halogens.
    Kubař T; Bodrog Z; Gaus M; Köhler C; Aradi B; Frauenheim T; Elstner M
    J Chem Theory Comput; 2013 Jul; 9(7):2939-49. PubMed ID: 26583977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SCC-DFTB Parametrization for Boron and Boranes.
    Grundkötter-Stock B; Bezugly V; Kunstmann J; Cuniberti G; Frauenheim T; Niehaus TA
    J Chem Theory Comput; 2012 Mar; 8(3):1153-63. PubMed ID: 26593373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking Density Functional Based Tight-Binding for Silver and Gold Materials: From Small Clusters to Bulk.
    Oliveira LFL; Tarrat N; Cuny J; Morillo J; Lemoine D; Spiegelman F; Rapacioli M
    J Phys Chem A; 2016 Oct; 120(42):8469-8483. PubMed ID: 27735183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward an Accurate Density-Functional Tight-Binding Description of Zinc-Containing Compounds.
    Moreira NH; Dolgonos G; Aradi B; da Rosa AL; Frauenheim T
    J Chem Theory Comput; 2009 Mar; 5(3):605-14. PubMed ID: 26610226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative density functional theory and density functional tight binding study of arginine and arginine-rich cell penetrating peptide TAT adsorption on anatase TiO2.
    Li W; Kotsis K; Manzhos S
    Phys Chem Chem Phys; 2016 Jul; 18(29):19902-17. PubMed ID: 27400036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.