These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32040315)

  • 21. Performance of the SCC-DFTB Model for Description of Five-Membered Ring Carbohydrate Conformations: Comparison to Force Fields, High-Level Electronic Structure Methods, and Experiment.
    Islam SM; Roy PN
    J Chem Theory Comput; 2012 Jul; 8(7):2412-23. PubMed ID: 26588973
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural Characterization of Sulfur-Containing Water Clusters Using a Density-Functional Based Tight-Binding Approach.
    Korchagina KA; Simon A; Rapacioli M; Spiegelman F; Cuny J
    J Phys Chem A; 2016 Nov; 120(45):9089-9100. PubMed ID: 27809528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DFTB Parameters for the Periodic Table, Part 2: Energies and Energy Gradients from Hydrogen to Calcium.
    Oliveira AF; Philipsen P; Heine T
    J Chem Theory Comput; 2015 Nov; 11(11):5209-18. PubMed ID: 26574316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of SCC-DFTB and NDDO-based semiempirical molecular orbital methods for organic molecules.
    Sattelmeyer KW; Tirado-Rives J; Jorgensen WL
    J Phys Chem A; 2006 Dec; 110(50):13551-9. PubMed ID: 17165882
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Benchmark Study of the SCC-DFTB Approach for a Biomolecular Proton Channel.
    Liang R; Swanson JM; Voth GA
    J Chem Theory Comput; 2014 Jan; 10(1):451-462. PubMed ID: 25104919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Importance of van der Waals Interactions in QM/MM Simulations.
    Riccardi D; Li G; Cui Q
    J Phys Chem B; 2004 May; 108(20):6467-78. PubMed ID: 18950136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Caveat on SCC-DFTB and Noncovalent Interactions Involving Sulfur Atoms.
    Petraglia R; Corminboeuf C
    J Chem Theory Comput; 2013 Jul; 9(7):3020-5. PubMed ID: 26583983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An efficient way to model complex magnetite: Assessment of SCC-DFTB against DFT.
    Liu H; Seifert G; Di Valentin C
    J Chem Phys; 2019 Mar; 150(9):094703. PubMed ID: 30849917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling realistic TiO
    Selli D; Fazio G; Di Valentin C
    J Chem Phys; 2017 Oct; 147(16):164701. PubMed ID: 29096504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Divide-and-Conquer-Type Density-Functional Tight-Binding Simulations of Hydroxide Ion Diffusion in Bulk Water.
    Sakti AW; Nishimura Y; Nakai H
    J Phys Chem B; 2017 Feb; 121(6):1362-1371. PubMed ID: 28112934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water clusters in an argon matrix: infrared spectra from molecular dynamics simulations with a self-consistent charge density functional-based tight binding/force-field potential.
    Simon A; Iftner C; Mascetti J; Spiegelman F
    J Phys Chem A; 2015 Mar; 119(11):2449-67. PubMed ID: 25650885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water clusters on graphite: methodology for quantum chemical a priori prediction of reaction rate constants.
    Xu S; Irle S; Musaev DG; Lin MC
    J Phys Chem A; 2005 Oct; 109(42):9563-72. PubMed ID: 16866408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation of Liquids with the Tight-Binding Density-Functional Approach and Improved Atomic Charges.
    Cuny J; Cerda Calatayud J; Ansari N; Hassanali AA; Rapacioli M; Simon A
    J Phys Chem B; 2020 Aug; 124(34):7421-7432. PubMed ID: 32696649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parametrization and Benchmark of DFTB3 for Organic Molecules.
    Gaus M; Goez A; Elstner M
    J Chem Theory Comput; 2013 Jan; 9(1):338-54. PubMed ID: 26589037
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring SCC-DFTB paths for mapping QM/MM reaction mechanisms.
    Woodcock HL; Hodoscek M; Brooks BR
    J Phys Chem A; 2007 Jul; 111(26):5720-8. PubMed ID: 17555303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analytical second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding method.
    Witek HA; Irle S; Morokuma K
    J Chem Phys; 2004 Sep; 121(11):5163-70. PubMed ID: 15352808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SCC-DFTB calculation of the static first hyperpolarizability: from gas phase molecules to functionalized surfaces.
    NĂ©non S; Champagne B
    J Chem Phys; 2013 May; 138(20):204107. PubMed ID: 23742454
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Curvature Constrained Splines for DFTB Repulsive Potential Parametrization.
    Ammothum Kandy AK; Wadbro E; Aradi B; Broqvist P; Kullgren J
    J Chem Theory Comput; 2021 Mar; 17(3):1771-1781. PubMed ID: 33606527
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling Charge Resonance in Cationic Molecular Clusters: Combining DFT-Tight Binding with Configuration Interaction.
    Rapacioli M; Spiegelman F; Scemama A; Mirtschink A
    J Chem Theory Comput; 2011 Jan; 7(1):44-55. PubMed ID: 26606217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved electronic properties from third-order SCC-DFTB with cost efficient post-SCF extensions.
    Kaminski S; Gaus M; Elstner M
    J Phys Chem A; 2012 Dec; 116(48):11927-37. PubMed ID: 23167841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.