BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 32040669)

  • 1. Deep Convolutional Radiomic Features on Diffusion Tensor Images for Classification of Glioma Grades.
    Zhang Z; Xiao J; Wu S; Lv F; Gong J; Jiang L; Yu R; Luo T
    J Digit Imaging; 2020 Aug; 33(4):826-837. PubMed ID: 32040669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading.
    Inano R; Oishi N; Kunieda T; Arakawa Y; Yamao Y; Shibata S; Kikuchi T; Fukuyama H; Miyamoto S
    Neuroimage Clin; 2014; 5():396-407. PubMed ID: 25180159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomics strategy for glioma grading using texture features from multiparametric MRI.
    Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB
    J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas.
    Raja R; Sinha N; Saini J; Mahadevan A; Rao KN; Swaminathan A
    Neuroradiology; 2016 Dec; 58(12):1217-1231. PubMed ID: 27796448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study for glioma classification using deep convolutional neural networks.
    Özcan H; Emiroğlu BG; Sabuncuoğlu H; Özdoğan S; Soyer A; Saygı T
    Math Biosci Eng; 2021 Jan; 18(2):1550-1572. PubMed ID: 33757198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach.
    Yuan J; Siakallis L; Li HB; Brandner S; Zhang J; Li C; Mancini L; Bisdas S
    BMC Med Imaging; 2024 May; 24(1):104. PubMed ID: 38702613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging.
    Hashido T; Saito S; Ishida T
    J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status.
    Zhao J; Wang YL; Li XB; Hu MS; Li ZH; Song YK; Wang JY; Tian YS; Liu DW; Yan X; Jiang L; Yang ZY; Chu JP
    J Neurooncol; 2019 Jan; 141(1):195-203. PubMed ID: 30414095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences.
    Qin JB; Liu Z; Zhang H; Shen C; Wang XC; Tan Y; Wang S; Wu XF; Tian J
    Med Sci Monit; 2017 May; 23():2168-2178. PubMed ID: 28478462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of diffusion tensor imaging metrics for gliomas grading at 3 T.
    Server A; Graff BA; Josefsen R; Orheim TE; Schellhorn T; Nordhøy W; Nakstad PH
    Eur J Radiol; 2014 Mar; 83(3):e156-65. PubMed ID: 24457139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging.
    Lin K; Cidan W; Qi Y; Wang X
    Med Phys; 2022 Jul; 49(7):4419-4429. PubMed ID: 35366379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis.
    Nakamoto T; Takahashi W; Haga A; Takahashi S; Kiryu S; Nawa K; Ohta T; Ozaki S; Nozawa Y; Tanaka S; Mukasa A; Nakagawa K
    Sci Rep; 2019 Dec; 9(1):19411. PubMed ID: 31857632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion tensor imaging radiomics in lower-grade glioma: improving subtyping of isocitrate dehydrogenase mutation status.
    Park CJ; Choi YS; Park YW; Ahn SS; Kang SG; Chang JH; Kim SH; Lee SK
    Neuroradiology; 2020 Mar; 62(3):319-326. PubMed ID: 31820065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation Between Apparent Diffusion Coefficient and the Ki-67 Proliferation Index in Grading Pediatric Glioma.
    Yao R; Cheng A; Zhang Z; Jin B; Yu H
    J Comput Assist Tomogr; 2023 Mar-Apr 01; 47(2):322-328. PubMed ID: 36957971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Subtype Classification in Lower-Grade Glioma with Accelerated DTI.
    Aliotta E; Nourzadeh H; Batchala PP; Schiff D; Lopes MB; Druzgal JT; Mukherjee S; Patel SH
    AJNR Am J Neuroradiol; 2019 Sep; 40(9):1458-1463. PubMed ID: 31413006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading.
    Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I
    Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features.
    Zhang X; Yan LF; Hu YC; Li G; Yang Y; Han Y; Sun YZ; Liu ZC; Tian Q; Han ZY; Liu LD; Hu BQ; Qiu ZY; Wang W; Cui GB
    Oncotarget; 2017 Jul; 8(29):47816-47830. PubMed ID: 28599282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging.
    Togao O; Hiwatashi A; Yamashita K; Kikuchi K; Keupp J; Yoshimoto K; Kuga D; Yoneyama M; Suzuki SO; Iwaki T; Takahashi M; Iihara K; Honda H
    Eur Radiol; 2017 Feb; 27(2):578-588. PubMed ID: 27003139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Glioma Grading Using Deep Convolutional Neural Networks.
    Gutta S; Acharya J; Shiroishi MS; Hwang D; Nayak KS
    AJNR Am J Neuroradiol; 2021 Jan; 42(2):233-239. PubMed ID: 33303522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glioma grading, molecular feature classification, and microstructural characterization using MR diffusional variance decomposition (DIVIDE) imaging.
    Li S; Zheng Y; Sun W; Lasič S; Szczepankiewicz F; Wei Q; Han S; Zhang S; Zhong X; Wang L; Li H; Cai Y; Xu D; Li Z; He Q; van Westen D; Bryskhe K; Topgaard D; Xu H
    Eur Radiol; 2021 Nov; 31(11):8197-8207. PubMed ID: 33914116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.