These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 32040669)
21. Glioma grading, molecular feature classification, and microstructural characterization using MR diffusional variance decomposition (DIVIDE) imaging. Li S; Zheng Y; Sun W; Lasič S; Szczepankiewicz F; Wei Q; Han S; Zhang S; Zhong X; Wang L; Li H; Cai Y; Xu D; Li Z; He Q; van Westen D; Bryskhe K; Topgaard D; Xu H Eur Radiol; 2021 Nov; 31(11):8197-8207. PubMed ID: 33914116 [TBL] [Abstract][Full Text] [Related]
22. Histogram analysis of diffusion kurtosis imaging derived maps may distinguish between low and high grade gliomas before surgery. Qi XX; Shi DF; Ren SX; Zhang SY; Li L; Li QC; Guan LM Eur Radiol; 2018 Apr; 28(4):1748-1755. PubMed ID: 29143940 [TBL] [Abstract][Full Text] [Related]
24. Classification of low- and high-grade gliomas using radiomic analysis of multiple sequences of MRI brain. Zachariah RM; Priya PS; Pendem S J Cancer Res Ther; 2023; 19(2):435-446. PubMed ID: 37313916 [TBL] [Abstract][Full Text] [Related]
25. Diagnostic performance of diffusion tensor imaging for preo- perative glioma grading. Duy Hung N; Minh Duc N; Van Anh NT; Thanh Dung L; He DV Clin Ter; 2021 Jul; 172(4):315-321. PubMed ID: 34247214 [TBL] [Abstract][Full Text] [Related]
26. Conventional magnetic resonance imaging-based radiomic signature predicts telomerase reverse transcriptase promoter mutation status in grade II and III gliomas. Jiang C; Kong Z; Zhang Y; Liu S; Liu Z; Chen W; Liu P; Liu D; Wang Y; Lyu Y; Zhao D; Wang Y; You H; Feng F; Ma W Neuroradiology; 2020 Jul; 62(7):803-813. PubMed ID: 32239241 [TBL] [Abstract][Full Text] [Related]
27. Differentiation between high-grade gliomas and solitary brain metastases: a comparison of five diffusion-weighted MRI models. Mao J; Zeng W; Zhang Q; Yang Z; Yan X; Zhang H; Wang M; Yang G; Zhou M; Shen J BMC Med Imaging; 2020 Nov; 20(1):124. PubMed ID: 33228564 [TBL] [Abstract][Full Text] [Related]
28. Automated glioma grading on conventional MRI images using deep convolutional neural networks. Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478 [TBL] [Abstract][Full Text] [Related]
29. Differentiation of residual/recurrent gliomas from postradiation necrosis with arterial spin labeling and diffusion tensor magnetic resonance imaging-derived metrics. Razek AAKA; El-Serougy L; Abdelsalam M; Gaballa G; Talaat M Neuroradiology; 2018 Feb; 60(2):169-177. PubMed ID: 29218370 [TBL] [Abstract][Full Text] [Related]
30. Differentiation between low-grade and high-grade glioma using combined diffusion tensor imaging metrics. Ma L; Song ZJ Clin Neurol Neurosurg; 2013 Dec; 115(12):2489-95. PubMed ID: 24183513 [TBL] [Abstract][Full Text] [Related]
31. Assessment of diffusion tensor imaging metrics in differentiating low-grade from high-grade gliomas. El-Serougy L; Abdel Razek AA; Ezzat A; Eldawoody H; El-Morsy A Neuroradiol J; 2016 Oct; 29(5):400-7. PubMed ID: 27562582 [TBL] [Abstract][Full Text] [Related]
32. Diagnostic accuracy of MRI texture analysis for grading gliomas. Ditmer A; Zhang B; Shujaat T; Pavlina A; Luibrand N; Gaskill-Shipley M; Vagal A J Neurooncol; 2018 Dec; 140(3):583-589. PubMed ID: 30145731 [TBL] [Abstract][Full Text] [Related]
33. Intergrating conventional MRI, texture analysis of dynamic contrast-enhanced MRI, and susceptibility weighted imaging for glioma grading. Su CQ; Lu SS; Han QY; Zhou MD; Hong XN Acta Radiol; 2019 Jun; 60(6):777-787. PubMed ID: 30244590 [TBL] [Abstract][Full Text] [Related]
34. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Jiang T; Liu X; Wang Y Neuroimage Clin; 2018; 17():306-311. PubMed ID: 29527478 [TBL] [Abstract][Full Text] [Related]
35. Multi-Channel 3D Deep Feature Learning for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages. Nie D; Lu J; Zhang H; Adeli E; Wang J; Yu Z; Liu L; Wang Q; Wu J; Shen D Sci Rep; 2019 Jan; 9(1):1103. PubMed ID: 30705340 [TBL] [Abstract][Full Text] [Related]
36. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features. Ren Y; Zhang X; Rui W; Pang H; Qiu T; Wang J; Xie Q; Jin T; Zhang H; Chen H; Zhang Y; Lu H; Yao Z; Zhang J; Feng X J Magn Reson Imaging; 2019 Mar; 49(3):808-817. PubMed ID: 30194745 [TBL] [Abstract][Full Text] [Related]
37. Glioma Tumor Grading Using Radiomics on Conventional MRI: A Comparative Study of WHO 2021 and WHO 2016 Classification of Central Nervous Tumors. Moodi F; Khodadadi Shoushtari F; Ghadimi DJ; Valizadeh G; Khormali E; Salari HM; Ohadi MAD; Nilipour Y; Jahanbakhshi A; Rad HS J Magn Reson Imaging; 2024 Sep; 60(3):923-938. PubMed ID: 38031466 [TBL] [Abstract][Full Text] [Related]
38. Diffusion-tensor imaging for glioma grading at 3-T magnetic resonance imaging: analysis of fractional anisotropy and mean diffusivity. Lee HY; Na DG; Song IC; Lee DH; Seo HS; Kim JH; Chang KH J Comput Assist Tomogr; 2008; 32(2):298-303. PubMed ID: 18379322 [TBL] [Abstract][Full Text] [Related]
39. Glioma grading using a machine-learning framework based on optimized features obtained from T Sengupta A; Ramaniharan AK; Gupta RK; Agarwal S; Singh A J Magn Reson Imaging; 2019 Oct; 50(4):1295-1306. PubMed ID: 30895704 [TBL] [Abstract][Full Text] [Related]
40. The Value of Enhanced MR Radiomics in Estimating the IDH1 Genotype in High-Grade Gliomas. Niu L; Feng WH; Duan CF; Liu YC; Liu JH; Liu XJ Biomed Res Int; 2020; 2020():4630218. PubMed ID: 33163535 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]