These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32040943)

  • 41. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor.
    Curet OM; Patankar NA; Lauder GV; MacIver MA
    Bioinspir Biomim; 2011 Jun; 6(2):026004. PubMed ID: 21474864
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fish-inspired tracking of underwater turbulent plumes.
    Gunnarson P; Dabiri JO
    Bioinspir Biomim; 2024 Sep; 19(5):. PubMed ID: 39163889
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multibody system dynamics for bio-inspired locomotion: from geometric structures to computational aspects.
    Boyer F; Porez M
    Bioinspir Biomim; 2015 Mar; 10(2):025007. PubMed ID: 25811531
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bottom-level motion control for robotic fish to swim in groups: modeling and experiments.
    Li L; Liu A; Wang W; Ravi S; Fu R; Yu J; Xie G
    Bioinspir Biomim; 2019 May; 14(4):046001. PubMed ID: 30875698
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
    Jusufi A; Vogt DM; Wood RJ; Lauder GV
    Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CFD based parameter tuning for motion control of robotic fish.
    Tian R; Li L; Wang W; Chang X; Ravi S; Xie G
    Bioinspir Biomim; 2020 Feb; 15(2):026008. PubMed ID: 31935704
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modelling cephalopod-inspired pulsed-jet locomotion for underwater soft robots.
    Renda F; Giorgio-Serchi F; Boyer F; Laschi C
    Bioinspir Biomim; 2015 Sep; 10(5):055005. PubMed ID: 26414068
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of sensory feedback topology on the entrainment of a neural oscillator with a compliant foil for swimming systems.
    Carryon GN; Tangorra JL
    Bioinspir Biomim; 2020 Jun; 15(4):046013. PubMed ID: 32059194
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design.
    Russo RS; Blemker SS; Fish FE; Bart-Smith H
    Bioinspir Biomim; 2015 Jun; 10(4):046002. PubMed ID: 26079094
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of robot hand with pneumatic actuator and construct of master-slave system.
    Nishino S; Tsujiuchi N; Koizumi T; Komatsubara H; Kudawara T; Shimizu M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3027-30. PubMed ID: 18002632
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Launching the AquaMAV: bioinspired design for aerial-aquatic robotic platforms.
    Siddall R; Kovač M
    Bioinspir Biomim; 2014 Sep; 9(3):031001. PubMed ID: 24615533
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A bio-inspired robotic fish utilizes the snap-through buckling of its spine to generate accelerations of more than 20g.
    Currier TM; Lheron S; Modarres-Sadeghi Y
    Bioinspir Biomim; 2020 Aug; 15(5):055006. PubMed ID: 32503011
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A bioinspired multi-modal flying and walking robot.
    Daler L; Mintchev S; Stefanini C; Floreano D
    Bioinspir Biomim; 2015 Jan; 10(1):016005. PubMed ID: 25599118
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A μ analysis-based, controller-synthesis framework for robust bioinspired visual navigation in less-structured environments.
    Keshavan J; Gremillion G; Escobar-Alvarez H; Humbert JS
    Bioinspir Biomim; 2014 Jun; 9(2):025011. PubMed ID: 24852145
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Advantages of aquatic animals as models for bio-inspired drones over present AUV technology.
    Fish FE
    Bioinspir Biomim; 2020 Feb; 15(2):025001. PubMed ID: 31751980
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion.
    Manfredi L; Assaf T; Mintchev S; Marrazza S; Capantini L; Orofino S; Ascari L; Grillner S; Wallén P; Ekeberg O; Stefanini C; Dario P
    Biol Cybern; 2013 Oct; 107(5):513-27. PubMed ID: 24030051
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Goal-directed multimodal locomotion through coupling between mechanical and attractor selection dynamics.
    Nurzaman SG; Yu X; Kim Y; Iida F
    Bioinspir Biomim; 2015 Mar; 10(2):025004. PubMed ID: 25811228
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Passive robotic models of propulsion by the bodies and caudal fins of fish.
    Lauder GV; Flammang B; Alben S
    Integr Comp Biol; 2012 Nov; 52(5):576-87. PubMed ID: 22740513
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm.
    Berlinger F; Gauci M; Nagpal R
    Sci Robot; 2021 Jan; 6(50):. PubMed ID: 34043581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.