These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32040991)

  • 1. Energy recovery and nutrients recycling from municipal sewage sludge.
    Das P; Khan S; AbdulQuadir M; Thaher M; Waqas M; Easa A; Attia ESM; Al-Jabri H
    Sci Total Environ; 2020 May; 715():136775. PubMed ID: 32040991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal liquefaction of sewage sludge into biocrude: Effect of aqueous phase recycling on energy recovery and pollution mitigation.
    Song H; Yang T; Li B; Tong Y; Li R
    Water Res; 2022 Nov; 226():119278. PubMed ID: 36323207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermal co-liquefaction of microalgae, sugarcane bagasse, brewer's spent grain, and sludge from a paper recycling mill: Modeling and evaluation of biocrude and biochar yield.
    Bassoli SC; Sanson AL; Naves FL; Amaral MS
    J Environ Manage; 2024 Apr; 356():120626. PubMed ID: 38518491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process.
    Leng L; Li J; Wen Z; Zhou W
    Bioresour Technol; 2018 May; 256():529-542. PubMed ID: 29459104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-temperature catalyst based Hydrothermal liquefaction of harmful Macroalgal blooms, and aqueous phase nutrient recycling by microalgae.
    Kumar V; Kumar S; Chauhan PK; Verma M; Bahuguna V; Joshi HC; Ahmad W; Negi P; Sharma N; Ramola B; Rautela I; Nanda M; Vlaskin MS
    Sci Rep; 2019 Aug; 9(1):11384. PubMed ID: 31388042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A feasibility study of utilizing hydrothermal liquefaction derived aqueous phase as nutrients for semi-continuous cultivation of Tetraselmis sp.
    Das P; AbdulQuadir M; Thaher M; Khan S; Chaudhary AK; Al-Jabri H
    Bioresour Technol; 2020 Jan; 295():122310. PubMed ID: 31670114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase.
    Patel B; Guo M; Chong C; Sarudin SHM; Hellgardt K
    Sci Total Environ; 2016 Oct; 568():489-497. PubMed ID: 27318079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of ash and municipal sewage sludge as macronutrient sources in sustainable plant biomass production.
    Antonkiewicz J; Popławska A; Kołodziej B; Ciarkowska K; Gambuś F; Bryk M; Babula J
    J Environ Manage; 2020 Jun; 264():110450. PubMed ID: 32217325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comprehensive Hydrothermal Co-Liquefaction of Diverse Biowastes for Energy-Dense Biocrude Production: Synergistic and Antagonistic Effects.
    Zhang G; Wang K; Liu Q; Han L; Zhang X
    Int J Environ Res Public Health; 2022 Aug; 19(17):. PubMed ID: 36078216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of aqueous phase from hydrothermal liquefaction of municipal sludge by adsorption: Comparison of biochar, hydrochar, and granular activated carbon.
    Aktas K; Liu H; Eskicioglu C
    J Environ Manage; 2024 Apr; 356():120619. PubMed ID: 38518489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution characteristics and migration pathways of metals during hydrothermal liquefaction of municipal sewage sludge in the presence of various catalysts.
    Strugała-Wilczek A; Basa W; Pankiewicz-Sperka M; Xu D; Duan P; Hao B; Wang Y; Leng L; Yang L; Fan L; Kapusta K
    Sci Total Environ; 2024 Apr; 920():171023. PubMed ID: 38367729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction.
    Li H; Liu Z; Zhang Y; Li B; Lu H; Duan N; Liu M; Zhu Z; Si B
    Bioresour Technol; 2014 Feb; 154():322-9. PubMed ID: 24413449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From agricultural use of sewage sludge to nutrient extraction: A soil science outlook.
    Kirchmann H; Börjesson G; Kätterer T; Cohen Y
    Ambio; 2017 Mar; 46(2):143-154. PubMed ID: 27651268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrothermal liquefaction of sewage sludge under isothermal and fast conditions.
    Qian L; Wang S; Savage PE
    Bioresour Technol; 2017 May; 232():27-34. PubMed ID: 28214442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic liquefaction of municipal sewage sludge over transition metal catalysts in ethanol-water co-solvent.
    Wang W; Yu Q; Meng H; Han W; Li J; Zhang J
    Bioresour Technol; 2018 Feb; 249():361-367. PubMed ID: 29055212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp.
    Eboibi BE; Lewis DM; Ashman PJ; Chinnasamy S
    Bioresour Technol; 2014 Oct; 170():20-29. PubMed ID: 25118149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogas liquid digestate grown Chlorella sp. for biocrude oil production via hydrothermal liquefaction.
    Li H; Wang M; Wang X; Zhang Y; Lu H; Duan N; Li B; Zhang D; Dong T; Liu Z
    Sci Total Environ; 2018 Sep; 635():70-77. PubMed ID: 29660729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal liquefaction of municipal sludge and its products applications.
    Wei Y; Xu D; Xu M; Zheng P; Fan L; Leng L; Kapusta K
    Sci Total Environ; 2024 Jan; 908():168177. PubMed ID: 37923270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal and recovery of nutrients from municipal sewage: Algal vs. conventional approaches.
    Abeysiriwardana-Arachchige ISA; Munasinghe-Arachchige SP; Delanka-Pedige HMK; Nirmalakhandan N
    Water Res; 2020 May; 175():115709. PubMed ID: 32213371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal liquefaction of sewage sludge; energy considerations and fate of micropollutants during pilot scale processing.
    Silva Thomsen LB; Carvalho PN; Dos Passos JS; Anastasakis K; Bester K; Biller P
    Water Res; 2020 Sep; 183():116101. PubMed ID: 32777593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.