These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32041039)

  • 1. Effect of multifunctional compound monoethanolamine on Criegee intermediates reactions and its atmospheric implications.
    Ma X; Zhao X; Wei Y; Wang W; Xu F; Zhang Q; Wang W
    Sci Total Environ; 2020 May; 715():136812. PubMed ID: 32041039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Study on the Gas-Phase and Aqueous Interface Reaction Mechanism of Criegee Intermediates with 2-Methylglyceric Acid and the Nucleation of Products.
    Li L; Zhang Q; Wei Y; Wang Q; Wang W
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of reactions between Criegee intermediates and methanesulfonic acid at the air-water interface.
    Ma X; Zhao X; Huang Z; Wang J; Lv G; Xu F; Zhang Q; Wang W
    Sci Total Environ; 2020 Mar; 707():135804. PubMed ID: 31862431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes.
    Lester MI; Klippenstein SJ
    Acc Chem Res; 2018 Apr; 51(4):978-985. PubMed ID: 29613756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas-phase and aqueous-surface reaction mechanism of Criegee radicals with serine and nucleation of products: A theoretical study.
    Li L; Zhang R; Ma X; Wei Y; Zhao X; Zhang R; Xu F; Li Y; Huo X; Zhang Q; Wang W
    Chemosphere; 2021 Oct; 280():130709. PubMed ID: 34162082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces.
    Zhong J; Kumar M; Zhu CQ; Francisco JS; Zeng XC
    Angew Chem Int Ed Engl; 2017 Jun; 56(27):7740-7744. PubMed ID: 28471069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Mechanisms and Atmospheric Implications of Criegee Intermediate-Alcohol Chemistry in the Gas Phase and Aqueous Surface Environments.
    Tang B; Li Z
    J Phys Chem A; 2020 Oct; 124(41):8585-8593. PubMed ID: 32946233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic studies of C
    Howes NUM; Mir ZS; Blitz MA; Hardman S; Lewis TR; Stone D; Seakins PW
    Phys Chem Chem Phys; 2018 Aug; 20(34):22218-22227. PubMed ID: 30118123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical Study on the Gas Phase and Gas-Liquid Interface Reaction Mechanism of Criegee Intermediates with Glycolic Acid Sulfate.
    Li L; Zhang Q; Wei Y; Wang Q; Wang W
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substituent Effect in the Reactions between Criegee Intermediates and 3-Aminopropanol.
    Kuo MT; Yang JN; Lin JJ; Takahashi K
    J Phys Chem A; 2021 Aug; 125(30):6580-6590. PubMed ID: 34314585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative kinetics for the atmospheric reactions of Criegee intermediates with acetonitrile.
    Zhang YQ; Xia Y; Long B
    Phys Chem Chem Phys; 2022 Oct; 24(40):24759-24766. PubMed ID: 36200683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO.
    Taatjes CA; Welz O; Eskola AJ; Savee JD; Scheer AM; Shallcross DE; Rotavera B; Lee EP; Dyke JM; Mok DK; Osborn DL; Percival CJ
    Science; 2013 Apr; 340(6129):177-80. PubMed ID: 23580524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atmospheric Chemistry of Criegee Intermediates: Unimolecular Reactions and Reactions with Water.
    Long B; Bao JL; Truhlar DG
    J Am Chem Soc; 2016 Nov; 138(43):14409-14422. PubMed ID: 27682870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atmospheric chemical reactions of monoethanolamine initiated by OH radical: mechanistic and kinetic study.
    Xie HB; Li C; He N; Wang C; Zhang S; Chen J
    Environ Sci Technol; 2014; 48(3):1700-6. PubMed ID: 24438015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products.
    Fang Y; Liu F; Barber VP; Klippenstein SJ; McCoy AB; Lester MI
    J Chem Phys; 2016 Feb; 144(6):061102. PubMed ID: 26874475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.
    Zhu C; Kumar M; Zhong J; Li L; Francisco JS; Zeng XC
    J Am Chem Soc; 2016 Sep; 138(35):11164-9. PubMed ID: 27509207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unimolecular dissociation dynamics of vibrationally activated CH3CHOO Criegee intermediates to OH radical products.
    Kidwell NM; Li H; Wang X; Bowman JM; Lester MI
    Nat Chem; 2016 May; 8(5):509-14. PubMed ID: 27102686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into Chemistry on Cloud/Aerosol Water Surfaces.
    Zhong J; Kumar M; Francisco JS; Zeng XC
    Acc Chem Res; 2018 May; 51(5):1229-1237. PubMed ID: 29633837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions.
    Berndt T; Kaethner R; Voigtländer J; Stratmann F; Pfeifle M; Reichle P; Sipilä M; Kulmala M; Olzmann M
    Phys Chem Chem Phys; 2015 Aug; 17(30):19862-73. PubMed ID: 26159709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction of Criegee Intermediate with Nitric Acid at the Air-Water Interface.
    Kumar M; Zhong J; Zeng XC; Francisco JS
    J Am Chem Soc; 2018 Apr; 140(14):4913-4921. PubMed ID: 29564890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.