BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32041054)

  • 21. Copper Oxide Nanoparticles Cause a Dose-Dependent Toxicity via Inducing Reactive Oxygen Species in Drosophila.
    Baeg E; Sooklert K; Sereemaspun A
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30322073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinspired fabrication of CuONPs synthesized via Cotoneaster and application in dye removal: antioxidant and antibacterial studies.
    Isiksel E; Attar A; Mutlu O; Altikatoglu Yapaoz M
    Environ Sci Pollut Res Int; 2023 Jan; 30(1):161-171. PubMed ID: 35895176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities.
    Zhai Y; Hunting ER; Wouterse M; Peijnenburg WJGM; Vijver MG
    Ecotoxicol Environ Saf; 2017 Nov; 145():349-358. PubMed ID: 28759764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Responses of soybean (Glycine max [L.] Merr.) to zinc oxide nanoparticles: Understanding changes in root system architecture, zinc tissue partitioning and soil characteristics.
    Yusefi-Tanha E; Fallah S; Rostamnejadi A; Pokhrel LR
    Sci Total Environ; 2022 Aug; 835():155348. PubMed ID: 35460795
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Addition-omission of zinc, copper, and boron nano and bulk oxide particles demonstrate element and size -specific response of soybean to micronutrients exposure.
    Dimkpa CO; Singh U; Bindraban PS; Adisa IO; Elmer WH; Gardea-Torresdey JL; White JC
    Sci Total Environ; 2019 May; 665():606-616. PubMed ID: 30776632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acute and chronic effects from pulse exposure of D. magna to silver and copper oxide nanoparticles.
    Sørensen SN; Holten Lützhøft HC; Rasmussen R; Baun A
    Aquat Toxicol; 2016 Nov; 180():209-217. PubMed ID: 27736693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antioxidant resveratrol protects against copper oxide nanoparticle toxicity in vivo.
    Khalid S; Afzal N; Khan JA; Hussain Z; Qureshi AS; Anwar H; Jamil Y
    Naunyn Schmiedebergs Arch Pharmacol; 2018 Oct; 391(10):1053-1062. PubMed ID: 29936585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative in situ ROS mediated killing of bacteria with bulk analogue, Eucalyptus leaf extract (ELE)-capped and bare surface copper oxide nanoparticles.
    Ali K; Ahmed B; Ansari SM; Saquib Q; Al-Khedhairy AA; Dwivedi S; Alshaeri M; Khan MS; Musarrat J
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():747-758. PubMed ID: 30948112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lysosomal deposition of copper oxide nanoparticles triggers HUVEC cells death.
    Zhang J; Zou Z; Wang B; Xu G; Wu Q; Zhang Y; Yuan Z; Yang X; Yu C
    Biomaterials; 2018 Apr; 161():228-239. PubMed ID: 29421558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copper oxide nanoparticles exhibit variable response against enzymatic toxicity biomarkers of Moina macrocopa.
    Borase HP; Singhal RS; Patil SV
    Environ Sci Pollut Res Int; 2023 Oct; ():. PubMed ID: 37821732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exposure of CuO nanoparticles and their metal counterpart leads to change in the gut microbiota and resistome of collembolans.
    Ding J; Liu J; Chang XB; Zhu D; Lassen SB
    Chemosphere; 2020 Nov; 258():127347. PubMed ID: 32535433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systemic Toxicity and Teratogenicity of Copper Oxide Nanoparticles and Copper Sulfate.
    Kadammattil AV; Sajankila SP; Prabhu S; Rao BN; Rao BSS
    J Nanosci Nanotechnol; 2018 Apr; 18(4):2394-2404. PubMed ID: 29442908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Green Synthesized Copper Oxide Nanoparticles Ameliorate Defence and Antioxidant Enzymes in
    Sarkar J; Chakraborty N; Chatterjee A; Bhattacharjee A; Dasgupta D; Acharya K
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32059367
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of anaerobically digested silver and copper oxide nanoparticles in biosolids on soil characteristics and bacterial community.
    Abdulsada Z; Kibbee R; Örmeci B; DeRosa M; Princz J
    Chemosphere; 2021 Jan; 263():128173. PubMed ID: 33297141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soil and foliar exposure of soybean (Glycine max) to Cu: Nanoparticle coating-dependent plant responses.
    Deng C; Wang Y; Cantu JM; Valdes C; Navarro G; Cota-Ruiz K; Hernandez-Viezcas JA; Li C; Elmer WH; Dimkpa CO; White JC; Gardea-Torresdey JL
    NanoImpact; 2022 Apr; 26():100406. PubMed ID: 35588596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of copper nanoparticles and ions on spermatozoa motility of sea trout (Salmo trutta m. Trutta L.).
    Kowalska-Góralska M; Dziewulska K; Kulasza M
    Aquat Toxicol; 2019 Jun; 211():11-17. PubMed ID: 30908993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: Influences on copper bioavailability and uptake.
    McManus P; Hortin J; Anderson AJ; Jacobson AR; Britt DW; Stewart J; McLean JE
    Environ Toxicol Chem; 2018 Oct; 37(10):2619-2632. PubMed ID: 29978493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Eco-friendly approaches of mycosynthesized copper oxide nanoparticles (CuONPs) using Pleurotus citrinopileatus mushroom extracts and their biological applications.
    Manimaran K; Yanto DHY; Kamaraj C; Selvaraj K; Pandiaraj S; M Elgorban A; Vignesh S; Kim H
    Environ Res; 2023 Sep; 232():116319. PubMed ID: 37271436
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress.
    Fatnassi IC; Chiboub M; Saadani O; Jebara M; Jebara SH
    C R Biol; 2015 Apr; 338(4):241-54. PubMed ID: 25747267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: Characterization of antibacterial activity and dye degradation potential.
    Vasantharaj S; Sathiyavimal S; Saravanan M; Senthilkumar P; Gnanasekaran K; Shanmugavel M; Manikandan E; Pugazhendhi A
    J Photochem Photobiol B; 2019 Feb; 191():143-149. PubMed ID: 30639996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.