BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 32041097)

  • 21. Accuracy of Consumer Wearable Heart Rate Measurement During an Ecologically Valid 24-Hour Period: Intraindividual Validation Study.
    Nelson BW; Allen NB
    JMIR Mhealth Uhealth; 2019 Mar; 7(3):e10828. PubMed ID: 30855232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility of continuous fever monitoring using wearable devices.
    Smarr BL; Aschbacher K; Fisher SM; Chowdhary A; Dilchert S; Puldon K; Rao A; Hecht FM; Mason AE
    Sci Rep; 2020 Dec; 10(1):21640. PubMed ID: 33318528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study.
    Can YS; Chalabianloo N; Ekiz D; Ersoy C
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003456
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Progress in Flexible and Wearable All Organic Photoplethysmography Sensors for SpO
    Dcosta JV; Ochoa D; Sanaur S
    Adv Sci (Weinh); 2023 Nov; 10(31):e2302752. PubMed ID: 37740697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Textile Sleeve for Monitoring Oxygen Saturation Using Multichannel Optical Fibre Photoplethysmography.
    Ballaji HK; Correia R; Korposh S; Hayes-Gill BR; Hernandez FU; Salisbury B; Morgan SP
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33212998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Achievements and Challenges for Real-Time Sensing of Analytes in Sweat within Wearable Platforms.
    Brothers MC; DeBrosse M; Grigsby CC; Naik RR; Hussain SM; Heikenfeld J; Kim SS
    Acc Chem Res; 2019 Feb; 52(2):297-306. PubMed ID: 30688433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the use of wearable physiological monitors to assess heat strain during occupational heat stress.
    Notley SR; Flouris AD; Kenny GP
    Appl Physiol Nutr Metab; 2018 Sep; 43(9):869-881. PubMed ID: 29726698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kick LL: A Smartwatch for Monitoring Respiration and Heart Rate using Photoplethysmography.
    Hoilett OS; Twibell AM; Srivastava R; Linnes JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3821-3824. PubMed ID: 30441198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating the Validity and Utility of Wearable Technology for Continuously Monitoring Patients in a Hospital Setting: Systematic Review.
    Patel V; Orchanian-Cheff A; Wu R
    JMIR Mhealth Uhealth; 2021 Aug; 9(8):e17411. PubMed ID: 34406121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Use of Conductive Lycra Fabric in the Prototype Design of a Wearable Device to Monitor Physiological Signals.
    Vowles CJ; Van Engelen SN; Noyek SE; Fayed N; Davies TC
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():922-925. PubMed ID: 36085829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Smart Vest: wearable multi-parameter remote physiological monitoring system.
    Pandian PS; Mohanavelu K; Safeer KP; Kotresh TM; Shakunthala DT; Gopal P; Padaki VC
    Med Eng Phys; 2008 May; 30(4):466-77. PubMed ID: 17869159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoplethysmography-based derivation of physiological information using the BioPoint.
    Gagnon-Turcotte G; Cote-Allard U; Mascret Q; Torresen J; Gosselin B
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Comparative Study of Physiological Monitoring with a Wearable Opto-Electronic Patch Sensor (OEPS) for Motion Reduction.
    Alzahrani A; Hu S; Azorin-Peris V
    Biosensors (Basel); 2015 Jun; 5(2):288-307. PubMed ID: 26061828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards On-Device Dehydration Monitoring Using Machine Learning from Wearable Device's Data.
    Sabry F; Eltaras T; Labda W; Hamza F; Alzoubi K; Malluhi Q
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using Fitness Trackers and Smartwatches to Measure Physical Activity in Research: Analysis of Consumer Wrist-Worn Wearables.
    Henriksen A; Haugen Mikalsen M; Woldaregay AZ; Muzny M; Hartvigsen G; Hopstock LA; Grimsgaard S
    J Med Internet Res; 2018 Mar; 20(3):e110. PubMed ID: 29567635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perceptions and experiences of outdoor occupational workers using digital devices for geospatial biometeorological monitoring.
    Sugg MM; Fuhrmann CM; Runkle JD
    Int J Biometeorol; 2020 Mar; 64(3):471-483. PubMed ID: 31811392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validity of a wearable sweat rate monitor and routine sweat analysis techniques using heat acclimation.
    Relf R; Eichhorn G; Waldock K; Flint MS; Beale L; Maxwell N
    J Therm Biol; 2020 May; 90():102577. PubMed ID: 32479383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Accuracy of Wearable Photoplethysmography Sensors for Telehealth Monitoring: A Scoping Review.
    Knight S; Lipoth J; Namvari M; Gu C; Hedayati M; Syed-Abdul S; Spiteri RJ
    Telemed J E Health; 2023 Jun; 29(6):813-828. PubMed ID: 36288566
    [No Abstract]   [Full Text] [Related]  

  • 40. Empowering People with a User-Friendly Wearable Platform for Unobtrusive Monitoring of Vital Physiological Parameters.
    Krizea M; Gialelis J; Protopsaltis G; Mountzouris C; Theodorou G
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.