BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32041164)

  • 1. Comparison of Acute Responses to Two Different Cycling Sprint Interval Exercise Protocols with Different Recovery Durations.
    Danek N; Smolarek M; Michalik K; Zatoń M
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32041164
    [No Abstract]   [Full Text] [Related]  

  • 2. Acute Effects of Using Added Respiratory Dead Space Volume in a Cycling Sprint Interval Exercise Protocol: A Cross-Over Study.
    Danek N; Michalik K; Smolarek M; Zatoń M
    Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33352863
    [No Abstract]   [Full Text] [Related]  

  • 3. Physiological responses to maximal 4 s sprint interval cycling using inertial loading: the influence of inter-sprint recovery duration.
    Vardarli E; Satiroglu R; Allen JR; Bjellquist-Ledger R; Burton HM; Coyle EF
    Eur J Appl Physiol; 2021 Aug; 121(8):2295-2304. PubMed ID: 33974126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peak oxygen uptake in a sprint interval testing protocol vs. maximal oxygen uptake in an incremental testing protocol and their relationship with cross-country mountain biking performance.
    Hebisz R; Hebisz P; Zatoń M; Michalik K
    Appl Physiol Nutr Metab; 2017 Apr; 42(4):371-376. PubMed ID: 28177737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified sprint interval training protocols. Part I. Physiological responses.
    Islam H; Townsend LK; Hazell TJ
    Appl Physiol Nutr Metab; 2017 Apr; 42(4):339-346. PubMed ID: 28177740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sprint interval exercise elicits near maximal peak VO2 during repeated bouts with a rapid recovery within 2 minutes.
    Hazell TJ; Olver TD; Macpherson RE; Hamilton CD; Lemon PW
    J Sports Med Phys Fitness; 2014 Dec; 54(6):750-6. PubMed ID: 25350032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attenuated Metabolic and Cardiorespiratory Responses to Isoenergetic High-Intensity Interval Exercise of Short Versus Long Bouts.
    Bogdanis GC; Stavrinou PS; Tsirigkakis S; Mougios V; Astorino TA; Mastorakos G
    Med Sci Sports Exerc; 2022 Jul; 54(7):1199-1209. PubMed ID: 35234217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiorespiratory and perceptual responses of two interval training and a continuous training protocol in healthy young men.
    Naves JPA; Rebelo ACS; Silva LRBE; Silva MS; Ramirez-Campillo R; Ramírez-Vélez R; Gentil P
    Eur J Sport Sci; 2019 Jun; 19(5):653-660. PubMed ID: 30496024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Within-session responses to high-intensity interval training in spinal cord injury.
    Astorino TA; Thum JS
    Disabil Rehabil; 2018 Feb; 40(4):444-449. PubMed ID: 27930890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Sprint Interval Cycling on Fatigue, Energy, and Cerebral Oxygenation.
    Monroe DC; Gist NH; Freese EC; O'Connor PJ; McCully KK; Dishman RK
    Med Sci Sports Exerc; 2016 Apr; 48(4):615-24. PubMed ID: 26559448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Profile and Performance Responses During Two Consecutive Sessions of Sprint Interval Training.
    Malta ES; Brisola GMP; de Poli RAB; Dutra YM; Franchini E; Zagatto AM
    J Strength Cond Res; 2020 Apr; 34(4):1078-1085. PubMed ID: 30161091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of perceptual responses between different upper-body sprint interval exercise protocols.
    Marin DP; Astorino TA; Martinatto F; Ragazzini FT; Bispo RE; Foschini D; Otton R
    Physiol Behav; 2019 Oct; 210():112626. PubMed ID: 31344392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic review examining the physiological, perceptual, and performance effects of active and passive recovery modes applied between repeated-sprints.
    Madueno MC; Guy JH; Dalbo VJ; Scanlan AT
    J Sports Med Phys Fitness; 2019 Sep; 59(9):1492-1502. PubMed ID: 30421874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of active recovery on power output during repeated maximal sprint cycling.
    Bogdanis GC; Nevill ME; Lakomy HK; Graham CM; Louis G
    Eur J Appl Physiol Occup Physiol; 1996; 74(5):461-9. PubMed ID: 8954294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The acute physiological and perceptual effects of recovery interval intensity during cycling-based high-intensity interval training.
    Fennell CRJ; Hopker JG
    Eur J Appl Physiol; 2021 Feb; 121(2):425-434. PubMed ID: 33098020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Acute Physiological and Perceptual Effects of Individualizing the Recovery Interval Duration Based Upon the Resolution of Muscle Oxygen Consumption During Cycling Exercise.
    Fennell CRJ; Hopker JG
    Int J Sports Physiol Perform; 2021 Nov; 16(11):1580-1588. PubMed ID: 33848976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of responses to two high-intensity intermittent exercise protocols.
    Gist NH; Freese EC; Cureton KJ
    J Strength Cond Res; 2014 Nov; 28(11):3033-40. PubMed ID: 24832968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The science of cycling: physiology and training - part 1.
    Faria EW; Parker DL; Faria IE
    Sports Med; 2005; 35(4):285-312. PubMed ID: 15831059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified sprint interval training protocols: physiological and psychological responses to 4 weeks of training.
    McKie GL; Islam H; Townsend LK; Robertson-Wilson J; Eys M; Hazell TJ
    Appl Physiol Nutr Metab; 2018 Jun; 43(6):595-601. PubMed ID: 29268031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute physiological responses to low-intensity blood flow restriction cycling.
    Thomas HJ; Scott BR; Peiffer JJ
    J Sci Med Sport; 2018 Sep; 21(9):969-974. PubMed ID: 29650336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.