These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32041275)

  • 1. A Novel Route to High-Quality Graphene Quantum Dots by Hydrogen-Assisted Pyrolysis of Silicon Carbide.
    Lee NE; Lee SY; Lim HS; Yoo SH; Cho SO
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32041275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Synthesis of Slightly Fluorinated Graphene Quantum Dots with Luminescent and Paramagnetic Properties through Thermal Cutting of Fluorinated Graphene.
    Feng Q; Xiao W; Liu Y; Zheng Y; Lin Y; Li J; Ye Q; Huang Z
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29316730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Avenue to Large-Scale Production of Graphene Quantum Dots from High-Purity Graphene Sheets Using Laboratory-Grade Graphite Electrodes.
    Kapoor S; Jha A; Ahmad H; Islam SS
    ACS Omega; 2020 Aug; 5(30):18831-18841. PubMed ID: 32775885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups.
    Jin SH; Kim DH; Jun GH; Hong SH; Jeon S
    ACS Nano; 2013 Feb; 7(2):1239-45. PubMed ID: 23272894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the Microstructures of Graphene Quantum Dots (GQDs) by Surface-Enhanced Raman Spectroscopy.
    Wu J; Wang P; Wang F; Fang Y
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30360411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent dependent synthesis of edge-controlled graphene quantum dots with high photoluminescence quantum yield and their application in confocal imaging of cancer cells.
    Rajender G; Goswami U; Giri PK
    J Colloid Interface Sci; 2019 Apr; 541():387-398. PubMed ID: 30710821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step synthesis of boron-doped graphene quantum dots for fluorescent sensors and biosensor.
    Ge S; He J; Ma C; Liu J; Xi F; Dong X
    Talanta; 2019 Jul; 199():581-589. PubMed ID: 30952301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved activity and thermo-stability of the horse radish peroxidase with graphene quantum dots and its application in fluorometric detection of hydrogen peroxide.
    Xiaoyan Z; Yuanyuan J; Zaijun L; Zhiguo G; Guangli W
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Aug; 165():106-113. PubMed ID: 27116472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Quantum Dots Electrochemistry and Sensitive Electrocatalytic Glucose Sensor Development.
    Gupta S; Smith T; Banaszak A; Boeckl J
    Nanomaterials (Basel); 2017 Sep; 7(10):. PubMed ID: 28961225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High yield synthesis of graphene quantum dots from biomass waste as a highly selective probe for Fe
    Abbas A; Tabish TA; Bull SJ; Lim TM; Phan AN
    Sci Rep; 2020 Dec; 10(1):21262. PubMed ID: 33277551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel thiol-ene click reaction for preparation of graphene quantum dots and their potential for fluorescence imaging.
    Huang H; Liu M; Tuo X; Chen J; Mao L; Wen Y; Tian J; Zhou N; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():631-637. PubMed ID: 30033296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technical synthesis and biomedical applications of graphene quantum dots.
    Li K; Liu W; Ni Y; Li D; Lin D; Su Z; Wei G
    J Mater Chem B; 2017 Jul; 5(25):4811-4826. PubMed ID: 32263997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organosilane-functionalized graphene quantum dots and their encapsulation into bi-layer hollow silica spheres for bioimaging applications.
    Wen T; Yang B; Guo Y; Sun J; Zhao C; Zhang S; Zhang M; Wang Y
    Phys Chem Chem Phys; 2014 Nov; 16(42):23188-95. PubMed ID: 25255171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Luminescent graphene quantum dots fabricated by pulsed laser synthesis.
    Habiba K; Makarov VI; Avalos J; Guinel MJ; Weiner BR; Morell G
    Carbon N Y; 2013 Nov; 64():341-350. PubMed ID: 27570249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots.
    Russo P; Hu A; Compagnini G; Duley WW; Zhou NY
    Nanoscale; 2014 Feb; 6(4):2381-9. PubMed ID: 24435549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of valine-functionalized graphene quantum dots and its use as a novel optical probe for sensitive and selective detection of Hg
    Xiaoyan Z; Zhangyi L; Zaijun L
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():415-424. PubMed ID: 27569775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green Preparation of High Yield Fluorescent Graphene Quantum Dots from Coal-Tar-Pitch by Mild Oxidation.
    Liu Q; Zhang J; He H; Huang G; Xing B; Jia J; Zhang C
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30336571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High fluorescent sulfur regulating graphene quantum dots with tunable photoluminescence properties.
    Luo Y; Li M; Sun L; Xu Y; Li M; Hu G; Tang T; Wen J; Li X; Zhang J; Wang L
    J Colloid Interface Sci; 2018 Nov; 529():205-213. PubMed ID: 29894939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Europium-decorated graphene quantum dots as a fluorescent probe for label-free, rapid and sensitive detection of Cu(2+) and L-cysteine.
    Lin L; Song X; Chen Y; Rong M; Wang Y; Zhao L; Zhao T; Chen X
    Anal Chim Acta; 2015 Sep; 891():261-8. PubMed ID: 26388385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Top-Down Fabrication of Luminescent Graphene Quantum Dots Using Self-Assembled Au Nanoparticles.
    Kang H; Kim DY; Cho J
    ACS Omega; 2023 Feb; 8(6):5885-5892. PubMed ID: 36816670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.