BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32041315)

  • 1. Mechanical and Thermal Properties of All-Wood Biocomposites through Controllable Dissolution of Cellulose with Ionic Liquid.
    Chen K; Xu W; Ding Y; Xue P; Sheng P; Qiao H; Wang S; Yu Y
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32041315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemp-based all-cellulose composites through ionic liquid promoted controllable dissolution and structural control.
    Chen K; Xu W; Ding Y; Xue P; Sheng P; Qiao H; He J
    Carbohydr Polym; 2020 May; 235():116027. PubMed ID: 32122518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-cellulose and all-wood composites by partial dissolution of cotton fabric and wood in ionic liquid.
    Shibata M; Teramoto N; Nakamura T; Saitoh Y
    Carbohydr Polym; 2013 Nov; 98(2):1532-9. PubMed ID: 24053836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of regenerated cellulose/halloysite nanotube bionanocomposite films with ionic liquid.
    Soheilmoghaddam M; Wahit MU
    Int J Biol Macromol; 2013 Jul; 58():133-9. PubMed ID: 23567285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and properties of cellulose microfibers from water hyacinth filled sago starch biocomposites.
    Syafri E; Jamaluddin ; Wahono S; Irwan A; Asrofi M; Sari NH; Fudholi A
    Int J Biol Macromol; 2019 Sep; 137():119-125. PubMed ID: 31252021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-based composites fabricated from wood fibers through self-bonding technology.
    Ye H; Wang Y; Yu Q; Ge S; Fan W; Zhang M; Huang Z; Manzo M; Cai L; Wang L; Xia C
    Chemosphere; 2022 Jan; 287(Pt 4):132436. PubMed ID: 34610375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Density Molded Cellulose Fibers and Transparent Biocomposites Based on Oriented Holocellulose.
    Yang X; Berthold F; Berglund LA
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10310-10319. PubMed ID: 30762342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and Thermal Properties of Wood-Fiber-Based All-Cellulose Composites and Cellulose-Polypropylene Biocomposites.
    Uusi-Tarkka EK; Skrifvars M; Khalili P; Heräjärvi H; Kadi N; Haapala A
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective dispersion and crosslinking in PVA/cellulose fiber biocomposites via solid-state mechanochemistry.
    Niu Y; Zhang X; He X; Zhao J; Zhang W; Lu C
    Int J Biol Macromol; 2015 Jan; 72():855-61. PubMed ID: 25301699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of Biocomposites from Rapeseed Meal, Fruit Pomace and Microcrystalline Cellulose Made by Press Pressing: Mechanical and Physicochemical Characteristics.
    Żelaziński T
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33668476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissolution of cellulose in 1-allyl-3-methylimidazolium methyl phosphonate ionic liquid and its composite system with Na
    Xu K; Xiao Y; Cao Y; Peng S; Fan M; Wang K
    Carbohydr Polym; 2019 Apr; 209():382-388. PubMed ID: 30732822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of Biocomposites Made of Extruded Apple Pomace and Potato Starch: Mechanical and Physicochemical Properties.
    Ekielski A; Żelaziński T; Kulig R; Kupczyk A
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural polymer biocomposites produced from processing raw wood flour by severe shear deformation.
    Zhang X; Wu X; Haryono H; Xia K
    Carbohydr Polym; 2014 Nov; 113():46-52. PubMed ID: 25256457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic liquid induces flexibility and thermoplasticity in cellulose film.
    Haq MA; Habu Y; Yamamoto K; Takada A; Kadokawa JI
    Carbohydr Polym; 2019 Nov; 223():115058. PubMed ID: 31426980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent.
    Soheilmoghaddam M; Wahit MU; Tuck Whye W; Ibrahim Akos N; Heidar Pour R; Ali Yussuf A
    Carbohydr Polym; 2014 Jun; 106():326-34. PubMed ID: 24721086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter.
    Lu Y; Weng L; Cao X
    Macromol Biosci; 2005 Nov; 5(11):1101-7. PubMed ID: 16245266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical and Water Absorption Properties of Short Banana Fiber/Unsaturated Polyester/Molecular Sieves + ZnO Nanorod Hybrid Nanobiocomposites.
    Arumugam C; Arumugam GS; Ganesan A; Muthusamy S
    ACS Omega; 2021 Dec; 6(51):35256-35271. PubMed ID: 34984258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Methylenediphenyl 4,4'-Diisocyanate and Maleic Anhydride as Coupling Agents on the Properties of Polylactic Acid/Polybutylene Succinate/Wood Flour Biocomposites by Reactive Extrusion.
    Seo YR; Bae SU; Gwon J; Wu Q; Kim BJ
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32260134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of Injection Molded Biocomposites Reinforced with Wood Particles of Short-Rotation Aspen and Willow.
    Kumar A; Jyske T; Möttönen V
    Polymers (Basel); 2020 Jan; 12(2):. PubMed ID: 31979028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Cellulose Film with Enhanced Mechanical Properties in Ionic Liquid 1-Allyl-3-methylimidaxolium Chloride (AmimCl).
    Pang J; Liu X; Zhang X; Wu Y; Sun R
    Materials (Basel); 2013 Mar; 6(4):1270-1284. PubMed ID: 28809209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.