These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32041517)

  • 1. Deep learning improves the ability of sgRNA off-target propensity prediction.
    Liu Q; Cheng X; Liu G; Li B; Liu X
    BMC Bioinformatics; 2020 Feb; 21(1):51. PubMed ID: 32041517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of sgRNA Off-Target Activity in CRISPR/Cas9 Gene Editing Using Graph Convolution Network.
    Vinodkumar PK; Ozcinar C; Anbarjafari G
    Entropy (Basel); 2021 May; 23(5):. PubMed ID: 34069050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Off-target predictions in CRISPR-Cas9 gene editing using deep learning.
    Lin J; Wong KC
    Bioinformatics; 2018 Sep; 34(17):i656-i663. PubMed ID: 30423072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Prediction of CRISPR/Cas9 off-target activity using multi-scale convolutional neural network].
    Xie H; Huang L; Luo Y; Zhang G
    Sheng Wu Gong Cheng Xue Bao; 2024 Mar; 40(3):858-876. PubMed ID: 38545983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CNN-XG: A Hybrid Framework for sgRNA On-Target Prediction.
    Li B; Ai D; Liu X
    Biomolecules; 2022 Mar; 12(3):. PubMed ID: 35327601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting CRISPR/Cas9 Repair Outcomes by Attention-Based Deep Learning Framework.
    Liu X; Wang S; Ai D
    Cells; 2022 Jun; 11(11):. PubMed ID: 35681543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review.
    Sherkatghanad Z; Abdar M; Charlier J; Makarenkov V
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of sgRNA on-target activity in bacteria by deep learning.
    Wang L; Zhang J
    BMC Bioinformatics; 2019 Oct; 20(1):517. PubMed ID: 31651233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretable CRISPR/Cas9 off-target activities with mismatches and indels prediction using BERT.
    Luo Y; Chen Y; Xie H; Zhu W; Zhang G
    Comput Biol Med; 2024 Feb; 169():107932. PubMed ID: 38199209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking deep learning methods for predicting CRISPR/Cas9 sgRNA on- and off-target activities.
    Zhang G; Luo Y; Dai X; Dai Z
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37775147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR/Cas9 gene editing system.
    Matson AW; Hosny N; Swanson ZA; Hering BJ; Burlak C
    PLoS One; 2019; 14(12):e0226107. PubMed ID: 31821359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPRpred(SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning.
    Muhammad Rafid AH; Toufikuzzaman M; Rahman MS; Rahman MS
    BMC Bioinformatics; 2020 Jun; 21(1):223. PubMed ID: 32487025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of off-target specificity and cell-specific fitness of CRISPR-Cas System using attention boosted deep learning and network-based gene feature.
    Liu Q; He D; Xie L
    PLoS Comput Biol; 2019 Oct; 15(10):e1007480. PubMed ID: 31658261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BoostMEC: predicting CRISPR-Cas9 cleavage efficiency through boosting models.
    Zarate OA; Yang Y; Wang X; Wang JP
    BMC Bioinformatics; 2022 Oct; 23(1):446. PubMed ID: 36289480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPRlnc: a machine learning method for lncRNA-specific single-guide RNA design of CRISPR/Cas9 system.
    Yang Z; Zhang Z; Li J; Chen W; Liu C
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TransCrispr: Transformer Based Hybrid Model for Predicting CRISPR/Cas9 Single Guide RNA Cleavage Efficiency.
    Wan Y; Jiang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1518-1528. PubMed ID: 36006888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CrnnCrispr: An Interpretable Deep Learning Method for CRISPR/Cas9 sgRNA On-Target Activity Prediction.
    Zhu W; Xie H; Chen Y; Zhang G
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepCRISPR: optimized CRISPR guide RNA design by deep learning.
    Chuai G; Ma H; Yan J; Chen M; Hong N; Xue D; Zhou C; Zhu C; Chen K; Duan B; Gu F; Qu S; Huang D; Wei J; Liu Q
    Genome Biol; 2018 Jun; 19(1):80. PubMed ID: 29945655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate deep learning off-target prediction with novel sgRNA-DNA sequence encoding in CRISPR-Cas9 gene editing.
    Charlier J; Nadon R; Makarenkov V
    Bioinformatics; 2021 Aug; 37(16):2299-2307. PubMed ID: 33599251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-M: Predicting sgRNA off-target effect using a multi-view deep learning network.
    Sun J; Guo J; Liu J
    PLoS Comput Biol; 2024 Mar; 20(3):e1011972. PubMed ID: 38483980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.