BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32041623)

  • 1. GEARing smart environments for pediatric motor rehabilitation.
    Kokkoni E; Mavroudi E; Zehfroosh A; Galloway JC; Vidal R; Heinz J; Tanner HG
    J Neuroeng Rehabil; 2020 Feb; 17(1):16. PubMed ID: 32041623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A motor learning therapeutic intervention for a child with cerebral palsy through a social assistive robot.
    Buitrago JA; Bolaños AM; Caicedo Bravo E
    Disabil Rehabil Assist Technol; 2020 Apr; 15(3):357-362. PubMed ID: 30806105
    [No Abstract]   [Full Text] [Related]  

  • 3. Development of robotic mobility for infants: rationale and outcomes.
    Larin HM; Dennis CW; Stansfield S
    Physiotherapy; 2012 Sep; 98(3):230-7. PubMed ID: 22898580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using virtual robot-mediated play activities to assess cognitive skills.
    Encarnação P; Alvarez L; Rios A; Maya C; Adams K; Cook A
    Disabil Rehabil Assist Technol; 2014 May; 9(3):231-41. PubMed ID: 23597315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Child and parent perceptions of acceptability and therapeutic value of a socially assistive robot used during pediatric rehabilitation.
    Butchart J; Harrison R; Ritchie J; Martí F; McCarthy C; Knight S; Scheinberg A
    Disabil Rehabil; 2021 Jan; 43(2):163-170. PubMed ID: 31120794
    [No Abstract]   [Full Text] [Related]  

  • 6. Harnessing the Power of Movement: A Body-Weight Support System & Assistive Robot Case Study.
    Helmi A; Wang TH; Logan SW; Fitter NT
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Powered mobility interventions for very young children with mobility limitations to aid participation and positive development: the EMPoWER evidence synthesis.
    Bray N; Kolehmainen N; McAnuff J; Tanner L; Tuersley L; Beyer F; Grayston A; Wilson D; Edwards RT; Noyes J; Craig D
    Health Technol Assess; 2020 Oct; 24(50):1-194. PubMed ID: 33078704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of a Socially Assistive Robot on Physical Activity, Social Play Behavior, and Toy-Use Behaviors of Children in a Free Play Environment: A Within-Subjects Study.
    Raja Vora J; Helmi A; Zhan C; Olivares E; Vu T; Wilkey M; Noregaard S; Fitter NT; Logan SW
    Front Robot AI; 2021; 8():768642. PubMed ID: 34881295
    [No Abstract]   [Full Text] [Related]  

  • 9. Mechanically assisted walking training for walking, participation, and quality of life in children with cerebral palsy.
    Chiu HC; Ada L; Bania TA
    Cochrane Database Syst Rev; 2020 Nov; 11(11):CD013114. PubMed ID: 33202482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Socially assistive robotics for post-stroke rehabilitation.
    Matarić MJ; Eriksson J; Feil-Seifer DJ; Winstein CJ
    J Neuroeng Rehabil; 2007 Feb; 4():5. PubMed ID: 17309795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration, Explanation, and Parent-Child Interaction in Museums.
    Callanan MA; Legare CH; Sobel DM; Jaeger GJ; Letourneau S; McHugh SR; Willard A; Brinkman A; Finiasz Z; Rubio E; Barnett A; Gose R; Martin JL; Meisner R; Watson J
    Monogr Soc Res Child Dev; 2020 Mar; 85(1):7-137. PubMed ID: 32175600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of modified ride-on cars to maximize mobility and improve socialization-a group design.
    Huang HH; Chen CL
    Res Dev Disabil; 2017 Feb; 61():172-180. PubMed ID: 28087203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Socially Assistive Robot with Integrated Serious Games for Therapies with Children with Autism Spectrum Disorder and Down Syndrome: A Pilot Study.
    Panceri JAC; Freitas É; de Souza JC; da Luz Schreider S; Caldeira E; Bastos TF
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspectives on mobile robots as tools for child development and pediatric rehabilitation.
    Michaud F; Salter T; Duquette A; Laplante JF
    Assist Technol; 2007; 19(1):21-36. PubMed ID: 17461288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot ZORA in rehabilitation and special education for children with severe physical disabilities: a pilot study.
    van den Heuvel RJF; Lexis MAS; de Witte LP
    Int J Rehabil Res; 2017 Dec; 40(4):353-359. PubMed ID: 28837499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. User-centred assistive technology assessment of a portable open-area body weight support system for in-home use.
    Kokkoni E; Galloway JC
    Disabil Rehabil Assist Technol; 2021 Jul; 16(5):505-512. PubMed ID: 31809205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robotic wheelchair trainer: design overview and a feasibility study.
    Marchal-Crespo L; Furumasu J; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2010 Aug; 7():40. PubMed ID: 20707886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. THERAPIST: Towards an Autonomous Socially Interactive Robot for Motor and Neurorehabilitation Therapies for Children.
    Calderita LV; Manso LJ; Bustos P; Suárez-Mejías C; Fernández F; Bandera A
    JMIR Rehabil Assist Technol; 2014 Oct; 1(1):e1. PubMed ID: 28582242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the quality and quantity of social interaction in a socially assistive robot-guided therapeutic setting.
    Wade E; Dye J; Mead R; Mataric MJ
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975358. PubMed ID: 22275562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury.
    Sale P; Franceschini M; Waldner A; Hesse S
    Eur J Phys Rehabil Med; 2012 Mar; 48(1):111-21. PubMed ID: 22543557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.