These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 32041965)
1. Gaze, visual, myoelectric, and inertial data of grasps for intelligent prosthetics. Cognolato M; Gijsberts A; Gregori V; Saetta G; Giacomino K; Hager AM; Gigli A; Faccio D; Tiengo C; Bassetto F; Caputo B; Brugger P; Atzori M; Müller H Sci Data; 2020 Feb; 7(1):43. PubMed ID: 32041965 [TBL] [Abstract][Full Text] [Related]
2. Gaze, behavioral, and clinical data for phantom limbs after hand amputation from 15 amputees and 29 controls. Saetta G; Cognolato M; Atzori M; Faccio D; Giacomino K; Mittaz Hager AG; Tiengo C; Bassetto F; Müller H; Brugger P Sci Data; 2020 Feb; 7(1):60. PubMed ID: 32080198 [TBL] [Abstract][Full Text] [Related]
3. Improving Robotic Hand Prosthesis Control With Eye Tracking and Computer Vision: A Multimodal Approach Based on the Visuomotor Behavior of Grasping. Cognolato M; Atzori M; Gassert R; Müller H Front Artif Intell; 2021; 4():744476. PubMed ID: 35146422 [TBL] [Abstract][Full Text] [Related]
4. On the Visuomotor Behavior of Amputees and Able-Bodied People During Grasping. Gregori V; Cognolato M; Saetta G; Atzori M; ; Gijsberts A Front Bioeng Biotechnol; 2019; 7():316. PubMed ID: 31799243 [TBL] [Abstract][Full Text] [Related]
5. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements. Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795 [TBL] [Abstract][Full Text] [Related]
6. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis. Dosen S; Markovic M; Somer K; Graimann B; Farina D J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323 [TBL] [Abstract][Full Text] [Related]
7. Megane Pro: Myo-electricity, visual and gaze tracking data acquisitions to improve hand prosthetics. Giordaniello F; Cognolato M; Graziani M; Gijsberts A; Gregori V; Saetta G; Hager AM; Tiengo C; Bassetto F; Brugger P; Caputo B; Muller H; Atzori M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1148-1153. PubMed ID: 28813976 [TBL] [Abstract][Full Text] [Related]
8. Online myoelectric control of a dexterous hand prosthesis by transradial amputees. Cipriani C; Antfolk C; Controzzi M; Lundborg G; Rosen B; Carrozza MC; Sebelius F IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):260-70. PubMed ID: 21292599 [TBL] [Abstract][Full Text] [Related]
9. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Witteveen HJ; Rietman HS; Veltink PH Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348 [TBL] [Abstract][Full Text] [Related]
10. Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching. Edwards AL; Dawson MR; Hebert JS; Sherstan C; Sutton RS; Chan KM; Pilarski PM Prosthet Orthot Int; 2016 Oct; 40(5):573-81. PubMed ID: 26423106 [TBL] [Abstract][Full Text] [Related]
11. Examining the Spatiotemporal Disruption to Gaze When Using a Myoelectric Prosthetic Hand. Parr JVV; Vine SJ; Harrison NR; Wood G J Mot Behav; 2018; 50(4):416-425. PubMed ID: 28925815 [TBL] [Abstract][Full Text] [Related]
12. Improving bimanual interaction with a prosthesis using semi-autonomous control. Volkmar R; Dosen S; Gonzalez-Vargas J; Baum M; Markovic M J Neuroeng Rehabil; 2019 Nov; 16(1):140. PubMed ID: 31727087 [TBL] [Abstract][Full Text] [Related]
13. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis. Markovic M; Dosen S; Popovic D; Graimann B; Farina D J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274 [TBL] [Abstract][Full Text] [Related]
14. Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of Closed-Loop Myoelectric Transradial Prostheses. Clemente F; D'Alonzo M; Controzzi M; Edin BB; Cipriani C IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1314-1322. PubMed ID: 26584497 [TBL] [Abstract][Full Text] [Related]
15. Design and Functional Evaluation of a Dexterous Myoelectric Hand Prosthesis With Biomimetic Tactile Sensor. Zhang T; Jiang L; Liu H IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1391-1399. PubMed ID: 29985148 [TBL] [Abstract][Full Text] [Related]
16. Classification of Transient Myoelectric Signals for the Control of Multi-Grasp Hand Prostheses. Kanitz G; Cipriani C; Edin BB IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1756-1764. PubMed ID: 30072331 [TBL] [Abstract][Full Text] [Related]
17. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis. Matrone GC; Cipriani C; Carrozza MC; Magenes G J Neuroeng Rehabil; 2012 Jun; 9():40. PubMed ID: 22703711 [TBL] [Abstract][Full Text] [Related]
18. Visuomotor behaviours when using a myoelectric prosthesis. Sobuh MM; Kenney LP; Galpin AJ; Thies SB; McLaughlin J; Kulkarni J; Kyberd P J Neuroeng Rehabil; 2014 Apr; 11():72. PubMed ID: 24758375 [TBL] [Abstract][Full Text] [Related]
19. Control Capabilities of Myoelectric Robotic Prostheses by Hand Amputees: A Scientific Research and Market Overview. Atzori M; Müller H Front Syst Neurosci; 2015; 9():162. PubMed ID: 26648850 [TBL] [Abstract][Full Text] [Related]
20. A hybrid auricular control system: direct, simultaneous, and proportional myoelectric control of two degrees of freedom in prosthetic hands. Schmalfuss L; Hahne J; Farina D; Hewitt M; Kogut A; Doneit W; Reischl M; Rupp R; Liebetanz D J Neural Eng; 2018 Oct; 15(5):056028. PubMed ID: 30063469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]