These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 32042154)

  • 1. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions.
    Fernie AR; Bachem CWB; Helariutta Y; Neuhaus HE; Prat S; Ruan YL; Stitt M; Sweetlove LJ; Tegeder M; Wahl V; Sonnewald S; Sonnewald U
    Nat Plants; 2020 Feb; 6(2):55-66. PubMed ID: 32042154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Next-generation strategies for understanding and influencing source-sink relations in crop plants.
    Sonnewald U; Fernie AR
    Curr Opin Plant Biol; 2018 Jun; 43():63-70. PubMed ID: 29428477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sucrose Utilization for Improved Crop Yields: A Review Article.
    Aluko OO; Li C; Wang Q; Liu H
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Source-Sink Regulation in Crops under Water Deficit.
    Rodrigues J; Inzé D; Nelissen H; Saibo NJM
    Trends Plant Sci; 2019 Jul; 24(7):652-663. PubMed ID: 31109763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability.
    Albacete AA; Martínez-Andújar C; Pérez-Alfocea F
    Biotechnol Adv; 2014; 32(1):12-30. PubMed ID: 24513173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Source-sink interaction: a century old concept under the light of modern molecular systems biology.
    Chang TG; Zhu XG; Raines C
    J Exp Bot; 2017 Jul; 68(16):4417-4431. PubMed ID: 28338782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate-smart crops with enhanced photosynthesis.
    Jansson C; Vogel J; Hazen S; Brutnell T; Mockler T
    J Exp Bot; 2018 Jul; 69(16):3801-3809. PubMed ID: 30032188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How can we make plants grow faster? A source-sink perspective on growth rate.
    White AC; Rogers A; Rees M; Osborne CP
    J Exp Bot; 2016 Jan; 67(1):31-45. PubMed ID: 26466662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress.
    Ferguson JN; Tidy AC; Murchie EH; Wilson ZA
    Plant Cell Environ; 2021 Jul; 44(7):2066-2089. PubMed ID: 33538010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthesis solutions to enhance productivity.
    Foyer CH; Ruban AV; Nixon PJ
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1730):. PubMed ID: 28808094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feeding the world: improving photosynthetic efficiency for sustainable crop production.
    Simkin AJ; López-Calcagno PE; Raines CA
    J Exp Bot; 2019 Feb; 70(4):1119-1140. PubMed ID: 30772919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing crop yield and resilience with trehalose 6-phosphate: targeting a feast-famine mechanism in cereals for better source-sink optimization.
    Paul MJ; Oszvald M; Jesus C; Rajulu C; Griffiths CA
    J Exp Bot; 2017 Jul; 68(16):4455-4462. PubMed ID: 28981769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies.
    Raines CA
    Plant Physiol; 2011 Jan; 155(1):36-42. PubMed ID: 21071599
    [No Abstract]   [Full Text] [Related]  

  • 14. [Carbon storage of poplar-crop ecosystem in Eastern Henan Plain].
    Li QY; Fan W; Yu XX; Wan M
    Ying Yong Sheng Tai Xue Bao; 2010 Mar; 21(3):613-8. PubMed ID: 20560315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removing constraints to sustainable food production: new ways to exploit secondary metabolism from companion planting and GM.
    Pickett JA; Midega CA; Pittchar J; Khan ZR
    Pest Manag Sci; 2019 Sep; 75(9):2346-2352. PubMed ID: 31166075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing rhizosphere microbiomes for drought-resilient crop production.
    de Vries FT; Griffiths RI; Knight CG; Nicolitch O; Williams A
    Science; 2020 Apr; 368(6488):270-274. PubMed ID: 32299947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What are the regulatory targets for intervention in assimilate partitioning to improve crop yield and resilience?
    Paul MJ
    J Plant Physiol; 2021 Nov; 266():153537. PubMed ID: 34619557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Untargeted Metabolomics for Future Assessment of Biotech Crops.
    Christ B; Pluskal T; Aubry S; Weng JK
    Trends Plant Sci; 2018 Dec; 23(12):1047-1056. PubMed ID: 30361071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding source-sink interactions: Progress in model plants and translational research to crops.
    Rosado-Souza L; Yokoyama R; Sonnewald U; Fernie AR
    Mol Plant; 2023 Jan; 16(1):96-121. PubMed ID: 36447435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The case for improving crop carbon sink strength or plasticity for a CO
    Dingkuhn M; Luquet D; Fabre D; Muller B; Yin X; Paul MJ
    Curr Opin Plant Biol; 2020 Aug; 56():259-272. PubMed ID: 32682621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.