These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 32042903)

  • 41. Symbiosis-Based Alternative Learning Multi-Swarm Particle Swarm Optimization.
    Niu B; Huang H; Tan L; Duan Q
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(1):4-14. PubMed ID: 28182540
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 'Sweeping rods': cargo transport by self-propelled bimetallic microrods moving perpendicular to their long axis.
    Arslanova A; Dugyala VR; Reichel EK; Reddy N; Fransaer J; Clasen C
    Soft Matter; 2021 Mar; 17(9):2369-2373. PubMed ID: 33606868
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiswarm comprehensive learning particle swarm optimization for solving multiobjective optimization problems.
    Yu X; Zhang X
    PLoS One; 2017; 12(2):e0172033. PubMed ID: 28192508
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamics of stochastic-constrained particles.
    Guo T
    Sci Rep; 2023 Feb; 13(1):2759. PubMed ID: 36797321
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers.
    Snezhko A
    J Phys Condens Matter; 2011 Apr; 23(15):153101. PubMed ID: 21436505
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Stresslet and straining motion couplings.
    Su Y; Swan JW; Zia RN
    J Chem Phys; 2017 Mar; 146(12):124903. PubMed ID: 28388164
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Attractive interactions between like-charged colloidal particles at the air/water interface.
    Gómez-Guzmán O; Ruiz-Garcia J
    J Colloid Interface Sci; 2005 Nov; 291(1):1-6. PubMed ID: 15978600
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.
    Zia RN; Swan JW; Su Y
    J Chem Phys; 2015 Dec; 143(22):224901. PubMed ID: 26671398
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multidimensional optical fractionation of colloidal particles with holographic verification.
    Xiao K; Grier DG
    Phys Rev Lett; 2010 Jan; 104(2):028302. PubMed ID: 20366628
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ionic effects in self-propelled Pt-coated Janus swimmers.
    Brown A; Poon W
    Soft Matter; 2014 Jun; 10(22):4016-27. PubMed ID: 24759904
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Colloidal diffusion inside a spherical cell.
    Cervantes-Martínez AE; Ramírez-Saito A; Armenta-Calderón R; Ojeda-López MA; Arauz-Lara JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):030402. PubMed ID: 21517444
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Driving dynamic colloidal assembly using eccentric self-propelled colloids.
    Ma Z; Lei QL; Ni R
    Soft Matter; 2017 Dec; 13(47):8940-8946. PubMed ID: 29144529
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nematic colloidal swarms assembled and transported on photosensitive surfaces.
    Hernàndez-Navarro S; Tierno P; Ignés-Mullol J; Sagués F
    IEEE Trans Nanobioscience; 2015 Apr; 14(3):267-71. PubMed ID: 25622322
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-organization in aggregating robot swarms: A DW-KNN topological approach.
    Khaldi B; Harrou F; Cherif F; Sun Y
    Biosystems; 2018 Mar; 165():106-121. PubMed ID: 29409799
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Searching for effective forces in laboratory insect swarms.
    Puckett JG; Kelley DH; Ouellette NT
    Sci Rep; 2014 Apr; 4():4766. PubMed ID: 24755944
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sculpting crystals one Burgers vector at a time: Toward colloidal lattice robot swarms.
    VanSaders B; Glotzer SC
    Proc Natl Acad Sci U S A; 2021 Jan; 118(3):. PubMed ID: 33431683
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extending the limits of direct force measurements: colloidal probes from sub-micron particles.
    Helfricht N; Mark A; Dorwling-Carter L; Zambelli T; Papastavrou G
    Nanoscale; 2017 Jul; 9(27):9491-9501. PubMed ID: 28660974
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tuning the motility and directionality of self-propelled colloids.
    Gomez-Solano JR; Samin S; Lozano C; Ruedas-Batuecas P; van Roij R; Bechinger C
    Sci Rep; 2017 Nov; 7(1):14891. PubMed ID: 29097762
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Colloidal shuttles for programmable cargo transport.
    Demirörs AF; Eichenseher F; Loessner MJ; Studart AR
    Nat Commun; 2017 Nov; 8(1):1872. PubMed ID: 29192141
    [TBL] [Abstract][Full Text] [Related]  

  • 60. External control strategies for self-propelled particles: Optimizing navigational efficiency in the presence of limited resources.
    Haeufle DF; Bäuerle T; Steiner J; Bremicker L; Schmitt S; Bechinger C
    Phys Rev E; 2016 Jul; 94(1-1):012617. PubMed ID: 27575189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.