These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 32043202)
1. The sensitive detection of ATP and ADA based on turn-on fluorescent copper/silver nanoclusters. Zhang B; Wei C Anal Bioanal Chem; 2020 Apr; 412(11):2529-2536. PubMed ID: 32043202 [TBL] [Abstract][Full Text] [Related]
2. The aptamer DNA-templated fluorescence silver nanoclusters: ATP detection and preliminary mechanism investigation. Xu J; Wei C Biosens Bioelectron; 2017 Jan; 87():422-427. PubMed ID: 27589406 [TBL] [Abstract][Full Text] [Related]
3. A Fluorescence Enhancement Sensor Based on Silver Nanoclusters Protected by Rich-G-DNA for ATP Detection. Li Y; Ren J; Meng Z; Zhang B Molecules; 2024 Sep; 29(18):. PubMed ID: 39339485 [TBL] [Abstract][Full Text] [Related]
4. Fluorescence Sensors for the Detection of L-Histidine Based on Silver Nanoclusters Modulated by Copper Ions. Li Y; Li M; Hu L; Zhang B Molecules; 2024 May; 29(10):. PubMed ID: 38792029 [TBL] [Abstract][Full Text] [Related]
5. Cu(2+) modulated silver nanoclusters as an on-off-on fluorescence probe for the selective detection of L-histidine. Zheng X; Yao T; Zhu Y; Shi S Biosens Bioelectron; 2015 Apr; 66():103-8. PubMed ID: 25460889 [TBL] [Abstract][Full Text] [Related]
6. Highly selective detection of bacterial alarmone ppGpp with an off-on fluorescent probe of copper-mediated silver nanoclusters. Zhang P; Wang Y; Chang Y; Xiong ZH; Huang CZ Biosens Bioelectron; 2013 Nov; 49():433-7. PubMed ID: 23810912 [TBL] [Abstract][Full Text] [Related]
7. Turn-on fluorescence detection of cysteine with glutathione protected silver nanoclusters. Cao N; Zhou H; Tan H; Qi R; Chen J; Zhang S; Xu J Methods Appl Fluoresc; 2019 Jun; 7(3):034004. PubMed ID: 31174198 [TBL] [Abstract][Full Text] [Related]
8. Highly sensitive and selective detection of Pb Zhang B; Wei C Talanta; 2018 May; 182():125-130. PubMed ID: 29501131 [TBL] [Abstract][Full Text] [Related]
9. Photoinduced electron transfer from polymer-templated Ag nanoclusters to G-quadruplex-hemin complexes for the construction of versatile biosensors and logic gate applications. Qu F; Mao B; Xue F; Xia L; You J; Song C Anal Bioanal Chem; 2018 Mar; 410(8):2211-2219. PubMed ID: 29387952 [TBL] [Abstract][Full Text] [Related]
10. A label-free fluorescent molecular beacon based on DNA-templated silver nanoclusters for detection of adenosine and adenosine deaminase. Zhang M; Guo SM; Li YR; Zuo P; Ye BC Chem Commun (Camb); 2012 Jun; 48(44):5488-90. PubMed ID: 22543727 [TBL] [Abstract][Full Text] [Related]
11. Detection of adenosine 5'-triphosphate by fluorescence variation of oligonucleotide-templated silver nanoclusters. Lee JD; Cang J; Chen YC; Chen WY; Ou CM; Chang HT Biosens Bioelectron; 2014 Aug; 58():266-71. PubMed ID: 24657647 [TBL] [Abstract][Full Text] [Related]
12. A facile label-free aptasensor for detecting ATP based on fluorescence enhancement of poly(thymine)-templated copper nanoparticles. Zhou SS; Zhang L; Cai QY; Dong ZZ; Geng X; Ge J; Li ZH Anal Bioanal Chem; 2016 Sep; 408(24):6711-7. PubMed ID: 27457102 [TBL] [Abstract][Full Text] [Related]
13. A Highly Sensitive and Selective Fluorescent Sensor for Folic Acid Detection Based on D-penicillamine Stabilized Ag/Cu Alloy Nanoclusters. Mei Zhang S; Xue Dong J; Li Wu X; Sen Zhao Y; Lei Li Y; Lin Wang S; Yang Y; An M; Su M; Ya Shi R; Feng Gao Z Chembiochem; 2024 Jul; 25(14):e202400254. PubMed ID: 38757240 [TBL] [Abstract][Full Text] [Related]
14. Multifunctional Dumbbell-Shaped DNA-Templated Selective Formation of Fluorescent Silver Nanoclusters or Copper Nanoparticles for Sensitive Detection of Biomolecules. Chen J; Ji X; Tinnefeld P; He Z ACS Appl Mater Interfaces; 2016 Jan; 8(3):1786-94. PubMed ID: 26719979 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence Detection of p-Nitrophenol in Water Using Bovine Serum Albumin Capped ag Nanoclusters. Mao M; Deng C; He Y; Ge Y; Song G J Fluoresc; 2017 Jul; 27(4):1421-1426. PubMed ID: 28401411 [TBL] [Abstract][Full Text] [Related]
16. A novel switchable fluorescent sensor for facile and highly sensitive detection of alkaline phosphatase activity in a water environment with gold/silver nanoclusters. Wang X; Liu Z; Zhao W; Sun J; Qian B; Wang X; Zeng H; Du D; Duan J Anal Bioanal Chem; 2019 Feb; 411(5):1009-1017. PubMed ID: 30552495 [TBL] [Abstract][Full Text] [Related]
17. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Lan GY; Huang CC; Chang HT Chem Commun (Camb); 2010 Feb; 46(8):1257-9. PubMed ID: 20449269 [TBL] [Abstract][Full Text] [Related]
18. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles. Song Q; Wang R; Sun F; Chen H; Wang Z; Na N; Ouyang J Biosens Bioelectron; 2017 Jan; 87():760-763. PubMed ID: 27649332 [TBL] [Abstract][Full Text] [Related]
19. An aptamer-based fluorometric zearalenone assay using a lighting-up silver nanocluster probe and catalyzed by a hairpin assembly. Yin N; Yuan S; Zhang M; Wang J; Li Y; Peng Y; Bai J; Ning B; Liang J; Gao Z Mikrochim Acta; 2019 Nov; 186(12):765. PubMed ID: 31713694 [TBL] [Abstract][Full Text] [Related]
20. DNA-Ag nanoclusters as fluorescence probe for turn-on aptamer sensor of small molecules. Zhou Z; Du Y; Dong S Biosens Bioelectron; 2011 Oct; 28(1):33-7. PubMed ID: 21802935 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]