These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32043207)

  • 1. Individual differences of conflict monitoring and feedback processing during reinforcement learning in a mock forensic context.
    Leue A; Nieden K; Scheuble V; Beauducel A
    Cogn Affect Behav Neurosci; 2020 Apr; 20(2):408-426. PubMed ID: 32043207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of the conflict monitoring intensity: the role of aversive reinforcement, cognitive demand, and trait-BIS.
    Leue A; Lange S; Beauducel A
    Cogn Affect Behav Neurosci; 2012 Jun; 12(2):287-307. PubMed ID: 22351495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N2 component in a go-nogo learning task: Motivation, behavioral activation, and reasoning.
    Scheuble V; Nieden K; Leue A; Beauducel A
    Int J Psychophysiol; 2019 Mar; 137():1-11. PubMed ID: 30590087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual differences in error tolerance in humans: Neurophysiological evidences.
    Padrao G; Mallorquí A; Cucurell D; Rodriguez-Fornells A
    Cogn Affect Behav Neurosci; 2015 Dec; 15(4):808-21. PubMed ID: 26018781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tradeoff relationship between internal monitoring and external feedback during the dynamic process of reinforcement learning.
    Liu C; Huo Z
    Int J Psychophysiol; 2020 Apr; 150():11-19. PubMed ID: 31982452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How do working-memory-related demand, reasoning ability and aversive reinforcement modulate conflict monitoring?
    Leue A; Weber B; Beauducel A
    Front Hum Neurosci; 2014; 8():210. PubMed ID: 24782739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrophysiological monetary incentive delay (e-MID) task: a way to decompose the different components of neural response to positive and negative monetary reinforcement.
    Broyd SJ; Richards HJ; Helps SK; Chronaki G; Bamford S; Sonuga-Barke EJ
    J Neurosci Methods; 2012 Jul; 209(1):40-9. PubMed ID: 22659003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Higher incentives can impair performance: neural evidence on reinforcement and rationality.
    Achtziger A; Alós-Ferrer C; Hügelschäfer S; Steinhauser M
    Soc Cogn Affect Neurosci; 2015 Nov; 10(11):1477-83. PubMed ID: 25816816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxytocin-induced facilitation of learning in a probabilistic task is associated with reduced feedback- and error-related negativity potentials.
    Zhuang Q; Zhu S; Yang X; Zhou X; Xu X; Chen Z; Lan C; Zhao W; Becker B; Yao S; Kendrick KM
    J Psychopharmacol; 2021 Jan; 35(1):40-49. PubMed ID: 33274683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Error-related negativity predicts reinforcement learning and conflict biases.
    Frank MJ; Woroch BS; Curran T
    Neuron; 2005 Aug; 47(4):495-501. PubMed ID: 16102533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG correlates of physical effort and reward processing during reinforcement learning.
    Palidis DJ; Gribble PL
    J Neurophysiol; 2020 Aug; 124(2):610-622. PubMed ID: 32727262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of learning on feedback-related brain potentials in a decision-making task.
    Sailer U; Fischmeister FP; Bauer H
    Brain Res; 2010 Jun; 1342():85-93. PubMed ID: 20423704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decomposing the effects of context valence and feedback information on speed and accuracy during reinforcement learning: a meta-analytical approach using diffusion decision modeling.
    Fontanesi L; Palminteri S; Lebreton M
    Cogn Affect Behav Neurosci; 2019 Jun; 19(3):490-502. PubMed ID: 31175616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning and altering behaviours by reinforcement: neurocognitive differences between children and adults.
    Shephard E; Jackson GM; Groom MJ
    Dev Cogn Neurosci; 2014 Jan; 7():94-105. PubMed ID: 24365670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How pupil responses track value-based decision-making during and after reinforcement learning.
    Van Slooten JC; Jahfari S; Knapen T; Theeuwes J
    PLoS Comput Biol; 2018 Nov; 14(11):e1006632. PubMed ID: 30500813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correct response negativity may reflect subjective value of reaction time under regulatory fit in a speed-rewarded task.
    Files BT; Pollard KA; Oiknine AH; Khooshabeh P; Passaro AD
    Psychophysiology; 2021 Sep; 58(9):e13856. PubMed ID: 34096066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electrophysiological correlate of conflict processing in an auditory spatial Stroop task: the effect of individual differences in navigational style.
    Buzzell GA; Roberts DM; Baldwin CL; McDonald CG
    Int J Psychophysiol; 2013 Nov; 90(2):265-71. PubMed ID: 23994425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedback delay impaired reinforcement learning: Principal components analysis of Reward Positivity.
    Yin H; Wang Y; Zhang X; Li P
    Neurosci Lett; 2018 Oct; 685():179-184. PubMed ID: 30170042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conflict and performance monitoring throughout the lifespan: An event-related potential (ERP) and temporospatial component analysis.
    Clawson A; Clayson PE; Keith CM; Catron C; Larson MJ
    Biol Psychol; 2017 Mar; 124():87-99. PubMed ID: 28143802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.