These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 3204333)
1. Kangaroo rat locomotion: design for elastic energy storage or acceleration? Biewener AA; Blickhan R J Exp Biol; 1988 Nov; 140():243-55. PubMed ID: 3204333 [TBL] [Abstract][Full Text] [Related]
2. Muscle forces during locomotion in kangaroo rats: force platform and tendon buckle measurements compared. Biewener AA; Blickhan R; Perry AK; Heglund NC; Taylor CR J Exp Biol; 1988 Jul; 137():191-205. PubMed ID: 3209966 [TBL] [Abstract][Full Text] [Related]
3. Elastic energy storage across speeds during steady-state hopping of desert kangaroo rats (Dipodomys deserti). Christensen BA; Lin DC; Schwaner MJ; McGowan CP J Exp Biol; 2022 Jan; 225(2):. PubMed ID: 35019972 [TBL] [Abstract][Full Text] [Related]
4. Functional capacity of kangaroo rat hindlimbs: adaptations for locomotor performance. Rankin JW; Doney KM; McGowan CP J R Soc Interface; 2018 Jul; 15(144):. PubMed ID: 29997260 [TBL] [Abstract][Full Text] [Related]
5. Muscle-tendon stresses and elastic energy storage during locomotion in the horse. Biewener AA Comp Biochem Physiol B Biochem Mol Biol; 1998 May; 120(1):73-87. PubMed ID: 9787779 [TBL] [Abstract][Full Text] [Related]
6. Preferred speeds in terrestrial vertebrates: are they equivalent? Perry AK; Blickhan R; Biewener AA; Heglund NC; Taylor CR J Exp Biol; 1988 Jul; 137():207-19. PubMed ID: 3209967 [TBL] [Abstract][Full Text] [Related]
7. Comparative analysis of Dipodomys species indicates that kangaroo rat hindlimb anatomy is adapted for rapid evasive leaping. Freymiller GA; Whitford MD; Schwaner MJ; McGowan CP; Higham TE; Clark RW J Anat; 2022 Mar; 240(3):466-474. PubMed ID: 34648184 [TBL] [Abstract][Full Text] [Related]
8. Vertical leaping mechanics of the Lesser Egyptian Jerboa reveal specialization for maneuverability rather than elastic energy storage. Moore TY; Rivera AM; Biewener AA Front Zool; 2017; 14():32. PubMed ID: 28680452 [TBL] [Abstract][Full Text] [Related]
9. Scaling of the ankle extensor muscle-tendon units and the biomechanical implications for bipedal hopping locomotion in the post-pouch kangaroo Macropus fuliginosus. Snelling EP; Biewener AA; Hu Q; Taggart DA; Fuller A; Mitchell D; Maloney SK; Seymour RS J Anat; 2017 Dec; 231(6):921-930. PubMed ID: 29034479 [TBL] [Abstract][Full Text] [Related]
10. Tendons from kangaroo rats are exceptionally strong and tough. Javidi M; McGowan CP; Schiele NR; Lin DC Sci Rep; 2019 Jun; 9(1):8196. PubMed ID: 31160640 [TBL] [Abstract][Full Text] [Related]
12. Immunohistochemistry of kangaroo rat hindlimb muscles. Ross CD; Meyers RA Anat Rec (Hoboken); 2022 Jun; 305(6):1435-1447. PubMed ID: 34605198 [TBL] [Abstract][Full Text] [Related]
13. In vivo muscle force and elastic energy storage during steady-speed hopping of tammar wallabies (Macropus eugenii). Biewener A; Baudinette R J Exp Biol; 1995; 198(Pt 9):1829-41. PubMed ID: 9319738 [TBL] [Abstract][Full Text] [Related]
14. Role of the muscle belly and tendon of soleus, gastrocnemius, and plantaris in mechanical energy absorption and generation during cat locomotion. Prilutsky BI; Herzog W; Leonard TR; Allinger TL J Biomech; 1996 Apr; 29(4):417-34. PubMed ID: 8964771 [TBL] [Abstract][Full Text] [Related]
15. Elastic and length-force characteristics of the gastrocnemius of the hopping mouse (Notomys alexis) and the rat (Rattus norvegicus). Ettema GJ J Exp Biol; 1996 Jun; 199(Pt 6):1277-85. PubMed ID: 8691113 [TBL] [Abstract][Full Text] [Related]
16. In vivo muscle force-length behavior during steady-speed hopping in tammar wallabies. Biewener AA; Konieczynski DD; Baudinette RV J Exp Biol; 1998 Jun; 201(Pt 11):1681-94. PubMed ID: 9576879 [TBL] [Abstract][Full Text] [Related]
17. A functional analysis of ankle extension in the ricochetal rodent (Dipodomys merriami). Williamson RG; Frederick EC Anat Histol Embryol; 1977 Jun; 6(2):157-66. PubMed ID: 578082 [No Abstract] [Full Text] [Related]
18. Joint work and power associated with acceleration and deceleration in tammar wallabies (Macropus eugenii). McGowan CP; Baudinette RV; Biewener AA J Exp Biol; 2005 Jan; 208(Pt 1):41-53. PubMed ID: 15601876 [TBL] [Abstract][Full Text] [Related]
19. Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus). Gillis GB; Biewener AA J Exp Biol; 2001 Aug; 204(Pt 15):2717-31. PubMed ID: 11533122 [TBL] [Abstract][Full Text] [Related]
20. Mechanical properties of the hindlimb bones of bullfrogs and cane toads in bending and torsion. Wilson MP; Espinoza NR; Shah SR; Blob RW Anat Rec (Hoboken); 2009 Jul; 292(7):935-44. PubMed ID: 19548305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]