These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 32043497)

  • 1. Er
    Francés-Soriano L; Peruffo N; Natile MM; Hildebrandt N
    Analyst; 2020 Apr; 145(7):2543-2553. PubMed ID: 32043497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monodisperse Core-Shell NaYF
    Kostiv U; Engstová H; Krajnik B; Šlouf M; Proks V; Podhorodecki A; Ježek P; Horák D
    Front Chem; 2020; 8():497. PubMed ID: 32596210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimising FRET-efficiency of Nd
    Lin SL; Chang CA
    Nanoscale; 2020 Apr; 12(16):8742-8749. PubMed ID: 32307477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Transfer between Tm-Doped Upconverting Nanoparticles and a Small Organic Dye with Large Stokes Shift.
    López de Guereñu A; Bastian P; Wessig P; John L; Kumke MU
    Biosensors (Basel); 2019 Jan; 9(1):. PubMed ID: 30626081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles.
    Wang M; Hou W; Mi CC; Wang WX; Xu ZR; Teng HH; Mao CB; Xu SK
    Anal Chem; 2009 Nov; 81(21):8783-9. PubMed ID: 19807113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the Compositional Architecture of Core-Shell Upconverting Lanthanide-Doped Nanoparticles for Optimal Luminescent Donor in Resonance Energy Transfer: The Effects of Energy Migration and Storage.
    Pilch-Wrobel A; Kotulska AM; Lahtinen S; Soukka T; Bednarkiewicz A
    Small; 2022 May; 18(18):e2200464. PubMed ID: 35355389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart design of exquisite multidimensional multilayered sand-clock-like upconversion nanostructures with ultrabright luminescence as efficient luminescence probes for bioimaging application.
    Abualrejal MMA; Eid K; Abdullah AM; Numan AA; Chen H; Zhang H; Wang Z
    Mikrochim Acta; 2020 Aug; 187(9):527. PubMed ID: 32860120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intense Red-Emitting Upconversion Nanophosphors (800 nm-Driven) with a Core/Double-Shell Structure for Dual-Modal Upconversion Luminescence and Magnetic Resonance in Vivo Imaging Applications.
    Hong AR; Kim Y; Lee TS; Kim S; Lee K; Kim G; Jang HS
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12331-12340. PubMed ID: 29546978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications.
    Wu X; Zhang Y; Takle K; Bilsel O; Li Z; Lee H; Zhang Z; Li D; Fan W; Duan C; Chan EM; Lois C; Xiang Y; Han G
    ACS Nano; 2016 Jan; 10(1):1060-6. PubMed ID: 26736013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nd
    Lin SL; Chen ZR; Chang CA
    Nanotheranostics; 2018; 2(3):243-257. PubMed ID: 29868349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic upconversion photodynamic and photothermal therapy under cold near-infrared excitation.
    Zhang Y; Zhu X; Zhang J; Wu Y; Liu J; Zhang Y
    J Colloid Interface Sci; 2021 Oct; 600():513-529. PubMed ID: 34034118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosensitiser functionalised luminescent upconverting nanoparticles for efficient photodynamic therapy of breast cancer cells.
    Buchner M; García Calavia P; Muhr V; Kröninger A; Baeumner AJ; Hirsch T; Russell DA; Marín MJ
    Photochem Photobiol Sci; 2019 Jan; 18(1):98-109. PubMed ID: 30328457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upconversion FRET quantitation: the role of donor photoexcitation mode and compositional architecture on the decay and intensity based responses.
    Kotulska AM; Pilch-Wróbel A; Lahtinen S; Soukka T; Bednarkiewicz A
    Light Sci Appl; 2022 Aug; 11(1):256. PubMed ID: 35986019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing Upconversion Nanoparticles for FRET Biosensing.
    Pini F; Francés-Soriano L; Andrigo V; Natile MM; Hildebrandt N
    ACS Nano; 2023 Mar; 17(5):4971-4984. PubMed ID: 36867492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yb,Nd,Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation.
    Wiesholler LM; Frenzel F; Grauel B; Würth C; Resch-Genger U; Hirsch T
    Nanoscale; 2019 Jul; 11(28):13440-13449. PubMed ID: 31287476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4:Yb,Tm/NaGdF4 core-shell upconverting nanoparticles to gold nanorods.
    Chen H; Guan Y; Wang S; Ji Y; Gong M; Wang L
    Langmuir; 2014 Nov; 30(43):13085-91. PubMed ID: 25296290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding FRET in Upconversion Nanoparticle Nucleic Acid Biosensors.
    Bhuckory S; Lahtinen S; Höysniemi N; Guo J; Qiu X; Soukka T; Hildebrandt N
    Nano Lett; 2023 Mar; 23(6):2253-2261. PubMed ID: 36729707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared-triggered anticancer drug release from upconverting nanoparticles.
    Fedoryshin LL; Tavares AJ; Petryayeva E; Doughan S; Krull UJ
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13600-6. PubMed ID: 25090028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precisely tailored shell thickness and Ln
    Serge Correales YE; Hazra C; Ullah S; Lima LR; Ribeiro SJL
    Nanoscale Adv; 2019 May; 1(5):1936-1947. PubMed ID: 36134241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging.
    Wang D; Xue B; Kong X; Tu L; Liu X; Zhang Y; Chang Y; Luo Y; Zhao H; Zhang H
    Nanoscale; 2015 Jan; 7(1):190-7. PubMed ID: 25406514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.