These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32043515)

  • 1. Defect engineering in two-dimensional electrocatalysts for hydrogen evolution.
    Xie J; Yang X; Xie Y
    Nanoscale; 2020 Feb; 12(7):4283-4294. PubMed ID: 32043515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of electronic structures in two-dimensional electrocatalysts for the hydrogen evolution reaction.
    Xie J; Qi J; Lei F; Xie Y
    Chem Commun (Camb); 2020 Oct; 56(80):11910-11930. PubMed ID: 32955040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts.
    Wu T; Dong C; Sun D; Huang F
    Nanoscale; 2021 Jan; 13(3):1581-1595. PubMed ID: 33444426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2D nanocomposite materials for HER electrocatalysts - a review.
    Sobhani Bazghale F; Gilak MR; Zamani Pedram M; Torabi F; Naikoo GA
    Heliyon; 2024 Jan; 10(1):e23450. PubMed ID: 38192770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale engineering and Mo-doping of 2D ultrathin ReS
    Xu J; Fang C; Zhu Z; Wang J; Yu B; Zhang J
    Nanoscale; 2020 Aug; 12(32):17045-17052. PubMed ID: 32785307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Trends in Synthesis and Investigation of Nickel Phosphide Compound/Hybrid-Based Electrocatalysts Towards Hydrogen Generation from Water Electrocatalysis.
    Khalafallah D; Zhi M; Hong Z
    Top Curr Chem (Cham); 2019 Oct; 377(6):29. PubMed ID: 31605243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface and defect engineering of hybrid nanostructures toward an efficient HER catalyst.
    Ozden S; Bawari S; Vinod S; Martinez U; Susarla S; Narvaez C; Joyner J; Tiwary CS; Narayanan TN; Ajayan PM
    Nanoscale; 2019 Jul; 11(26):12489-12496. PubMed ID: 31225850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defect Engineering in MoSe
    Shu H; Zhou D; Li F; Cao D; Chen X
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42688-42698. PubMed ID: 29152972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defects Enhance the Electrocatalytic Hydrogen Evolution Properties of MoS
    Cheng Y; Song H; Wu H; Zhang P; Tang Z; Lu S
    Chem Asian J; 2020 Oct; 15(20):3123-3134. PubMed ID: 32794344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Supported MoS
    Joyner J; Oliveira EF; Yamaguchi H; Kato K; Vinod S; Galvao DS; Salpekar D; Roy S; Martinez U; Tiwary CS; Ozden S; Ajayan PM
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12629-12638. PubMed ID: 32045208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Defect-Engineered Transition Metal Dichalcogenides for Enhanced Electrocatalytic Hydrogen Evolution: Perfecting Imperfections.
    Tan ZH; Kong XY; Ng BJ; Soo HS; Mohamed AR; Chai SP
    ACS Omega; 2023 Jan; 8(2):1851-1863. PubMed ID: 36687105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional (2D)/2D Interface Engineering of a MoS
    Chu K; Liu YP; Li YB; Guo YL; Tian Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7081-7090. PubMed ID: 31965787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis.
    Chen P; Tong Y; Wu C; Xie Y
    Acc Chem Res; 2018 Nov; 51(11):2857-2866. PubMed ID: 30375850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional materials as catalysts, interfaces, and electrodes for an efficient hydrogen evolution reaction.
    Cho YS; Kang J
    Nanoscale; 2024 Feb; 16(8):3936-3950. PubMed ID: 38347766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction.
    Seo B; Joo SH
    Nano Converg; 2017; 4(1):19. PubMed ID: 28798900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions.
    Mahmood N; Yao Y; Zhang JW; Pan L; Zhang X; Zou JJ
    Adv Sci (Weinh); 2018 Feb; 5(2):1700464. PubMed ID: 29610722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution.
    Xie J; Zhang J; Li S; Grote F; Zhang X; Zhang H; Wang R; Lei Y; Pan B; Xie Y
    J Am Chem Soc; 2013 Nov; 135(47):17881-8. PubMed ID: 24191645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for Improving the Catalytic Performance of 2D Covalent Organic Frameworks for Hydrogen Evolution and Oxygen Evolution Reactions.
    Deng Y; Wang Y; Chen Y; Zhang Z
    Chem Asian J; 2021 Jul; 16(14):1851-1863. PubMed ID: 34002483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical porous bimetal-sulfide bi-functional nanocatalysts for hydrogen production by overall water electrolysis.
    Chen W; Zhang Y; Chen G; Huang R; Wu Y; Zhou Y; Hu Y; Ostrikov KK
    J Colloid Interface Sci; 2020 Feb; 560():426-435. PubMed ID: 31679785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.