These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 3204363)

  • 1. Sodium-phosphate cotransport in human red blood cells. Kinetics and role in membrane metabolism.
    Shoemaker DG; Bender CA; Gunn RB
    J Gen Physiol; 1988 Oct; 92(4):449-74. PubMed ID: 3204363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The molecular basis for Na-dependent phosphate transport in human erythrocytes and K562 cells.
    Timmer RT; Gunn RB
    J Gen Physiol; 2000 Sep; 116(3):363-78. PubMed ID: 10962014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of Na+-Pi cotransport in opossum kidney cells by extracellular phosphate.
    Biber J; Forgo J; Murer H
    Am J Physiol; 1988 Aug; 255(2 Pt 1):C155-61. PubMed ID: 3407761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K; Kim KR; Kim JY; Park YS
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal Na(+)-phosphate cotransport in X-linked Hyp mice responds appropriately to Na+ gradient, membrane potential, and pH.
    Harvey N; Tenenhouse HS
    J Bone Miner Res; 1992 May; 7(5):563-71. PubMed ID: 1319668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual action of phosphonoformic acid on Na(+)-phosphate cotransport in opossum kidney cells.
    Loghman-Adham M; Dousa TP
    Am J Physiol; 1992 Aug; 263(2 Pt 2):F301-10. PubMed ID: 1380774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and stoichiometry of the human red cell Na+/H+ exchanger.
    Semplicini A; Spalvins A; Canessa M
    J Membr Biol; 1989 Mar; 107(3):219-28. PubMed ID: 2541250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different mechanisms of adaptive increase in Na+-Pi cotransport across renal brush-border membrane.
    Yusufi AN; Szczepanska-Konkel M; Hoppe A; Dousa TP
    Am J Physiol; 1989 May; 256(5 Pt 2):F852-61. PubMed ID: 2524168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. gamma-L-glutamyl-L-DOPA inhibits Na(+)-phosphate cotransport across renal brush border membranes and increases renal excretion of phosphate.
    de Toledo FG; Thompson MA; Bolliger C; Tyce GM; Dousa TP
    Kidney Int; 1999 May; 55(5):1832-42. PubMed ID: 10231445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Npt2 gene disruption confers resistance to the inhibitory action of parathyroid hormone on renal sodium-phosphate cotransport.
    Zhao N; Tenenhouse HS
    Endocrinology; 2000 Jun; 141(6):2159-65. PubMed ID: 10830304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 20-HETE mediates the effect of parathyroid hormone and protein kinase C on renal phosphate transport.
    Silverstein DM; Barac-Nieto M; Falck JR; Spitzer A
    Prostaglandins Leukot Essent Fatty Acids; 1998 Mar; 58(3):209-13. PubMed ID: 9610844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swelling-activated K-Cl cotransport: metabolic dependence and inhibition by vanadate and fluoride.
    O'Neill WC
    Am J Physiol; 1991 Feb; 260(2 Pt 1):C308-15. PubMed ID: 1847586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Furosemide-sensitive K+ (Rb+) transport in human erythrocytes: modes of operation, dependence on extracellular and intracellular Na+, kinetics, pH dependency and the effect of cell volume and N-ethylmaleimide.
    Duhm J
    J Membr Biol; 1987; 98(1):15-32. PubMed ID: 3669063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural requirement of monophosphates for inhibition of Na+-Pi cotransport in renal brush border membrane.
    Szczepanska-Konkel M; Yusufi AN; Lin JT; Dousa TP
    Biochem Pharmacol; 1989 Dec; 38(23):4191-7. PubMed ID: 2597189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Npt2 gene ablation and low-phosphate diet on renal Na(+)/phosphate cotransport and cotransporter gene expression.
    Hoag HM; Martel J; Gauthier C; Tenenhouse HS
    J Clin Invest; 1999 Sep; 104(6):679-86. PubMed ID: 10491403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity of Pi transport by BBM from superficial and juxtamedullary cortex of rat.
    Levi M
    Am J Physiol; 1990 Jun; 258(6 Pt 2):F1616-24. PubMed ID: 2141765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+ -phosphate cotransport in mouse distal convoluted tubule cells: evidence for Glvr-1 and Ram-1 gene expression.
    Tenenhouse HS; Gauthier C; Martel J; Gesek FA; Coutermarsh BA; Friedman PA
    J Bone Miner Res; 1998 Apr; 13(4):590-7. PubMed ID: 9556059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosphingolipids modulate renal phosphate transport in potassium deficiency.
    Zajicek HK; Wang H; Puttaparthi K; Halaihel N; Markovich D; Shayman J; Béliveau R; Wilson P; Rogers T; Levi M
    Kidney Int; 2001 Aug; 60(2):694-704. PubMed ID: 11473652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate transport via Na+ -Pi cotransport and anion exchange in lactating rat mammary tissue.
    Shillingford JM; Calvert DT; Beechey RB; Shennan DB
    Exp Physiol; 1996 Mar; 81(2):273-84. PubMed ID: 8845141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphate from the phosphointermediate (EP) of the human red blood cell Na/K pump is coeffluxed with Na, in the absence of external K.
    Marín R; Hoffman JF
    J Gen Physiol; 1994 Jul; 104(1):1-32. PubMed ID: 7964591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.