These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32043890)

  • 21. Two-Component
    Förster A; van Lenthe E; Spadetto E; Visscher L
    J Chem Theory Comput; 2023 Sep; 19(17):5958-5976. PubMed ID: 37594901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accelerating Core-Level
    Panadés-Barrueta RL; Golze D
    J Chem Theory Comput; 2023 Aug; 19(16):5450-5464. PubMed ID: 37566917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-Space Based Benchmark of G
    Gao W; Chelikowsky JR
    J Chem Theory Comput; 2019 Oct; 15(10):5299-5307. PubMed ID: 31424933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vertex effects in describing the ionization energies of the first-row transition-metal monoxide molecules.
    Wang Y; Ren X
    J Chem Phys; 2022 Dec; 157(21):214115. PubMed ID: 36511552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling X-ray Photoelectron Spectroscopy of Macromolecules Using
    Galleni L; Sajjadian FS; Conard T; Escudero D; Pourtois G; van Setten MJ
    J Phys Chem Lett; 2022 Sep; 13(37):8666-8672. PubMed ID: 36084286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamical effects in electron spectroscopy.
    Zhou JS; Kas JJ; Sponza L; Reshetnyak I; Guzzo M; Giorgetti C; Gatti M; Sottile F; Rehr JJ; Reining L
    J Chem Phys; 2015 Nov; 143(18):184109. PubMed ID: 26567648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective one-particle energies from generalized Kohn-Sham random phase approximation: A direct approach for computing and analyzing core ionization energies.
    Voora VK; Galhenage R; Hemminger JC; Furche F
    J Chem Phys; 2019 Oct; 151(13):134106. PubMed ID: 31594336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Benchmarking the Starting Points of the GW Approximation for Molecules.
    Bruneval F; Marques MA
    J Chem Theory Comput; 2013 Jan; 9(1):324-9. PubMed ID: 26589035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All-Electron Gaussian-Based
    Zhu T; Chan GK
    J Chem Theory Comput; 2021 Feb; 17(2):727-741. PubMed ID: 33397095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The GW Miracle in Many-Body Perturbation Theory for the Ionization Potential of Molecules.
    Bruneval F; Dattani N; van Setten MJ
    Front Chem; 2021; 9():749779. PubMed ID: 35004607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Benchmark of GW Approaches for the GW100 Test Set.
    Caruso F; Dauth M; van Setten MJ; Rinke P
    J Chem Theory Comput; 2016 Oct; 12(10):5076-5087. PubMed ID: 27631585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-Range Corrected DFT Meets GW: Vibrationally Resolved Photoelectron Spectra from First Principles.
    Gallandi L; Körzdörfer T
    J Chem Theory Comput; 2015 Nov; 11(11):5391-400. PubMed ID: 26894242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate band gaps and dielectric properties from one-electron theories (abstract only).
    Kresse G; Shishkin M; Marsman M; Paier J
    J Phys Condens Matter; 2008 Feb; 20(6):064203. PubMed ID: 21693865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Embedding vertex corrections in GW self-energy: Theory, implementation, and outlook.
    Weng G; Mallarapu R; Vlček V
    J Chem Phys; 2023 Apr; 158(14):144105. PubMed ID: 37061461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Excited states properties of organic molecules: from density functional theory to the GW and Bethe-Salpeter Green's function formalisms.
    Faber C; Boulanger P; Attaccalite C; Duchemin I; Blase X
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2011):20130271. PubMed ID: 24516185
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing Self-Consistent
    Wen M; Abraham V; Harsha G; Shee A; Whaley KB; Zgid D
    J Chem Theory Comput; 2024 Apr; 20(8):3109-3120. PubMed ID: 38573104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the Relation between Equation-of-Motion Coupled-Cluster Theory and the GW Approximation.
    Lange MF; Berkelbach TC
    J Chem Theory Comput; 2018 Aug; 14(8):4224-4236. PubMed ID: 30028614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals?
    Xu X; Zhang W; Tang M; Truhlar DG
    J Chem Theory Comput; 2015 May; 11(5):2036-52. PubMed ID: 26574408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Model GW study of the late transition metal monoxides.
    Ye LH; Asahi R; Peng LM; Freeman AJ
    J Chem Phys; 2012 Oct; 137(15):154110. PubMed ID: 23083151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. XABOOM: An X-ray Absorption Benchmark of Organic Molecules Based on Carbon, Nitrogen, and Oxygen 1s → π* Transitions.
    Fransson T; Brumboiu IE; Vidal ML; Norman P; Coriani S; Dreuw A
    J Chem Theory Comput; 2021 Mar; 17(3):1618-1637. PubMed ID: 33544612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.