These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 32043956)
1. Insights into plant-beneficial traits of probiotic Anderson AJ; Kim YC J Med Microbiol; 2020 Mar; 69(3):361-371. PubMed ID: 32043956 [No Abstract] [Full Text] [Related]
2. Regulation of GacA in Pseudomonas chlororaphis Strains Shows a Niche Specificity. Li J; Yang Y; Dubern JF; Li H; Halliday N; Chernin L; Gao K; Cámara M; Liu X PLoS One; 2015; 10(9):e0137553. PubMed ID: 26379125 [TBL] [Abstract][Full Text] [Related]
3. Insecticidal features displayed by the beneficial rhizobacterium Pseudomonas chlororaphis PCL1606. Arrebola E; Aprile FR; Calderón CE; de Vicente A; Cazorla FM Int Microbiol; 2022 Nov; 25(4):679-689. PubMed ID: 35670867 [TBL] [Abstract][Full Text] [Related]
4. Impact of spontaneous mutations on physiological traits and biocontrol activity of Pseudomonas chlororaphis M71. Raio A; Brilli F; Baraldi R; Neri L; Puopolo G Microbiol Res; 2020 Oct; 239():126517. PubMed ID: 32535393 [TBL] [Abstract][Full Text] [Related]
5. Pseudomonas chlororaphis metabolites as biocontrol promoters of plant health and improved crop yield. Raio A; Puopolo G World J Microbiol Biotechnol; 2021 May; 37(6):99. PubMed ID: 33978868 [TBL] [Abstract][Full Text] [Related]
6. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Jain R; Pandey A Microbiol Res; 2016 Sep; 190():63-71. PubMed ID: 27394000 [TBL] [Abstract][Full Text] [Related]
7. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Huang R; Feng Z; Chi X; Sun X; Lu Y; Zhang B; Lu R; Luo W; Wang Y; Miao J; Ge Y Microbiol Res; 2018 Oct; 215():55-64. PubMed ID: 30172309 [TBL] [Abstract][Full Text] [Related]
8. Profiling Metabolites with Antifungal Activities from Endophytic Plant-Beneficial Strains of Sokołowski W; Marek-Kozaczuk M; Sosnowski P; Sajnaga E; Jach ME; Karaś MA Molecules; 2024 Sep; 29(18):. PubMed ID: 39339366 [TBL] [Abstract][Full Text] [Related]
9. Comparative Genomic Analysis of Pseudomonas chlororaphis PCL1606 Reveals New Insight into Antifungal Compounds Involved in Biocontrol. Calderón CE; Ramos C; de Vicente A; Cazorla FM Mol Plant Microbe Interact; 2015 Mar; 28(3):249-60. PubMed ID: 25679537 [TBL] [Abstract][Full Text] [Related]
10. The GacS-regulated sigma factor RpoS governs production of several factors involved in biocontrol activity of the rhizobacterium Pseudomonas chlororaphis O6. Oh SA; Kim JS; Han SH; Park JY; Dimkpa C; Edlund C; Anderson AJ; Kim YC Can J Microbiol; 2013 Aug; 59(8):556-62. PubMed ID: 23898999 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen cyanide produced by Pseudomonas chlororaphis O6 is a key aphicidal metabolite. Kang BR; Anderson AJ; Kim YC Can J Microbiol; 2019 Mar; 65(3):185-190. PubMed ID: 30398901 [TBL] [Abstract][Full Text] [Related]
12. Phenazine and 1-Undecene Producing Tagele SB; Lee HG; Kim SW; Lee YS J Microbiol Biotechnol; 2019 Jan; 29(1):66-78. PubMed ID: 30415529 [TBL] [Abstract][Full Text] [Related]
13. EppR, a new LysR-family transcription regulator, positively influences phenazine biosynthesis in the plant growth-promoting rhizobacterium Pseudomonas chlororaphis G05. Chi X; Wang Y; Miao J; Wang W; Sun Y; Yu Z; Feng Z; Cheng S; Chen L; Ge Y Microbiol Res; 2022 Jul; 260():127050. PubMed ID: 35504237 [TBL] [Abstract][Full Text] [Related]
14. The global regulator GacS regulates biofilm formation in Pseudomonas chlororaphis O6 differently with carbon source. Kim JS; Kim YH; Park JY; Anderson AJ; Kim YC Can J Microbiol; 2014 Mar; 60(3):133-8. PubMed ID: 24588386 [TBL] [Abstract][Full Text] [Related]
15. A GacS deficiency does not affect Pseudomonas chlororaphis PA23 fitness when growing on canola, in aged batch culture or as a biofilm. Poritsanos N; Selin C; Fernando WG; Nakkeeran S; de Kievit TR Can J Microbiol; 2006 Dec; 52(12):1177-88. PubMed ID: 17473887 [TBL] [Abstract][Full Text] [Related]
16. Secondary Metabolites Production and Plant Growth Promotion by Shahid I; Rizwan M; Baig DN; Saleem RS; Malik KA; Mehnaz S J Microbiol Biotechnol; 2017 Mar; 27(3):480-491. PubMed ID: 27974729 [TBL] [Abstract][Full Text] [Related]
17. Complete Genome Sequence of Pseudomonas chlororaphis subsp. aurantiaca Reveals a Triplicate Quorum-Sensing Mechanism for Regulation of Phenazine Production. Morohoshi T; Yamaguchi T; Xie X; Wang WZ; Takeuchi K; Someya N Microbes Environ; 2017 Mar; 32(1):47-53. PubMed ID: 28239068 [TBL] [Abstract][Full Text] [Related]
18. [Synthesis of N-acyl-homoserine lactones, phenazines, some enzymatic activities and antifungal activity of Pseudomonas chlororaphis 449 cells carrying an inactivated rpoS gene]. Lipasova VA; Atamova EE; Khmel' IA Mol Gen Mikrobiol Virusol; 2009; (1):8-11. PubMed ID: 19283908 [TBL] [Abstract][Full Text] [Related]
19. Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo. Raio A; Reveglia P; Puopolo G; Cimmino A; Danti R; Evidente A Microbiol Res; 2017 Jun; 199():49-56. PubMed ID: 28454709 [TBL] [Abstract][Full Text] [Related]
20. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Park JY; Oh SA; Anderson AJ; Neiswender J; Kim JC; Kim YC Lett Appl Microbiol; 2011 May; 52(5):532-7. PubMed ID: 21362001 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]