BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32044001)

  • 21. Measuring NLR Oligomerization III: Detection of NLRP3 and NLRC4 Complex by Bioluminescence Resonance Energy Transfer.
    Martín-Sánchez F; Peñín-Franch A; Angosto-Bazarra D; Tapia-Abellán A; Compan V; Pelegrín P
    Methods Mol Biol; 2023; 2696():93-103. PubMed ID: 37578717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring Opioid Receptor Interaction in Living Cells by Bioluminescence Resonance Energy Transfer (BRET).
    Baiula M
    Methods Mol Biol; 2021; 2201():35-43. PubMed ID: 32975787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly Sensitive and Selective Detection of Inorganic Phosphates in the Water Environment by Biosensors Based on Bioluminescence Resonance Energy Transfer.
    Yu J; Zhang Y; Zhao Y; Zhang X; Ren H
    Anal Chem; 2023 Mar; 95(11):4904-4913. PubMed ID: 36942460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioluminescence resonance energy transfer to detect protein-protein interactions in live cells.
    Brown NE; Blumer JB; Hepler JR
    Methods Mol Biol; 2015; 1278():457-65. PubMed ID: 25859969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct comparison of bioluminescence-based resonance energy transfer methods for monitoring of proteolytic cleavage.
    Dacres H; Dumancic MM; Horne I; Trowell SC
    Anal Biochem; 2009 Feb; 385(2):194-202. PubMed ID: 19026607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Firefly Luciferase-Based Sequential Bioluminescence Resonance Energy Transfer (BRET)-Fluorescence Resonance Energy Transfer (FRET) Protease Assays.
    Branchini B
    Methods Mol Biol; 2016; 1461():101-15. PubMed ID: 27424898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein-protein interactions from single live cells and living animals.
    De A; Ray P; Loening AM; Gambhir SS
    FASEB J; 2009 Aug; 23(8):2702-9. PubMed ID: 19351700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BRET: NanoLuc-Based Bioluminescence Resonance Energy Transfer Platform to Monitor Protein-Protein Interactions in Live Cells.
    Mo XL; Fu H
    Methods Mol Biol; 2016; 1439():263-71. PubMed ID: 27317001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects.
    De A; Loening AM; Gambhir SS
    Cancer Res; 2007 Aug; 67(15):7175-83. PubMed ID: 17671185
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measuring NLR Oligomerization III: Detection of NLRP3 Complex by Bioluminescence Resonance Energy Transfer.
    Martín-Sánchez F; Compan V; Pelegrín P
    Methods Mol Biol; 2016; 1417():159-68. PubMed ID: 27221488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional complementation of high-efficiency resonance energy transfer: a new tool for the study of protein binding interactions in living cells.
    Molinari P; Casella I; Costa T
    Biochem J; 2008 Jan; 409(1):251-61. PubMed ID: 17868039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly Sensitive and Selective Biosensor for a Disaccharide Based on an AraC-Like Transcriptional Regulator Transduced with Bioluminescence Resonance Energy Transfer.
    Caron K; Trowell SC
    Anal Chem; 2018 Nov; 90(21):12986-12993. PubMed ID: 30234965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a human breast-cancer derived cell line stably expressing a bioluminescence resonance energy transfer (BRET)-based phosphatidyl inositol-3 phosphate (PIP3) biosensor.
    Kuo MS; Auriau J; Pierre-Eugène C; Issad T
    PLoS One; 2014; 9(3):e92737. PubMed ID: 24647478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing Arrestin Function Using Intramolecular FlAsH-BRET Biosensors.
    Strungs EG; Luttrell LM; Lee MH
    Methods Mol Biol; 2019; 1957():309-322. PubMed ID: 30919362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Near-Infrared Imaging of Steroid Hormone Activities Using Bright BRET Templates.
    Kim SB; Nishihara R; Paulmurugan R
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36614119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Creation of different bioluminescence resonance energy transfer based biosensors with high affinity to VEGF.
    Stumpf C; Wimmer T; Lorenz B; Stieger K
    PLoS One; 2020; 15(3):e0230344. PubMed ID: 32214330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NanoBRET--A Novel BRET Platform for the Analysis of Protein-Protein Interactions.
    Machleidt T; Woodroofe CC; Schwinn MK; Méndez J; Robers MB; Zimmerman K; Otto P; Daniels DL; Kirkland TA; Wood KV
    ACS Chem Biol; 2015 Aug; 10(8):1797-804. PubMed ID: 26006698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering BRET-Sensor Proteins.
    Arts R; Aper SJ; Merkx M
    Methods Enzymol; 2017; 589():87-114. PubMed ID: 28336075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fibrinolysis and thrombosis of fibrinogen-modified gold nanoparticles for detection of fibrinolytic-related proteins.
    Jian JW; Chiu WC; Chang HT; Hsu PH; Huang CC
    Anal Chim Acta; 2013 Apr; 774():67-72. PubMed ID: 23567118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ligand-activated BRET9 imaging for measuring protein-protein interactions in living mice.
    Bae Kim S; Fujii R; Natarajan A; Massoud TF; Paulmurugan R
    Chem Commun (Camb); 2019 Dec; 56(2):281-284. PubMed ID: 31807738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.