These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 32044346)

  • 1. Water as a Good Solvent for Unfolded Proteins: Folding and Collapse are Fundamentally Different.
    Clark PL; Plaxco KW; Sosnick TR
    J Mol Biol; 2020 Apr; 432(9):2882-2889. PubMed ID: 32044346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why Computed Protein Folding Landscapes Are Sensitive to the Water Model.
    Anandakrishnan R; Izadi S; Onufriev AV
    J Chem Theory Comput; 2019 Jan; 15(1):625-636. PubMed ID: 30514080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ubiquitin folds via a flip-twist-lock mechanism.
    Mandal M; Das A; Mukhopadhyay C
    Biochim Biophys Acta Proteins Proteom; 2020 Jan; 1868(1):140299. PubMed ID: 31676452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular dynamics study of the correlations between solvent-accessible surface, molecular volume, and folding state.
    Floriano WB; Domont GB; Nascimento MA
    J Phys Chem B; 2007 Feb; 111(7):1893-9. PubMed ID: 17261064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding simulations of Trp-cage mini protein in explicit solvent using biasing potential replica-exchange molecular dynamics simulations.
    Kannan S; Zacharias M
    Proteins; 2009 Aug; 76(2):448-60. PubMed ID: 19173315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of protein unfolding and limited refolding: characterization of partially unfolded states of ubiquitin in 60% methanol and in water.
    Alonso DO; Daggett V
    J Mol Biol; 1995 Mar; 247(3):501-20. PubMed ID: 7714903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How ionic liquids can help to stabilize native proteins.
    Weingärtner H; Cabrele C; Herrmann C
    Phys Chem Chem Phys; 2012 Jan; 14(2):415-26. PubMed ID: 22089969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A driving force for polypeptide and protein collapse.
    Merlino A; Pontillo N; Graziano G
    Phys Chem Chem Phys; 2016 Dec; 19(1):751-756. PubMed ID: 27929162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein structure, stability and solubility in water and other solvents.
    Pace CN; Treviño S; Prabhakaran E; Scholtz JM
    Philos Trans R Soc Lond B Biol Sci; 2004 Aug; 359(1448):1225-34; discussion 1234-5. PubMed ID: 15306378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An effective solvent theory connecting the underlying mechanisms of osmolytes and denaturants for protein stability.
    Linhananta A; Hadizadeh S; Plotkin SS
    Biophys J; 2011 Jan; 100(2):459-68. PubMed ID: 21244842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How, when and why proteins collapse: the relation to folding.
    Haran G
    Curr Opin Struct Biol; 2012 Feb; 22(1):14-20. PubMed ID: 22104965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyelectrolyte conformational transition in aqueous solvent mixture influenced by hydrophobic interactions and hydrogen bonding effects: PAA-water-ethanol.
    Sappidi P; Natarajan U
    J Mol Graph Model; 2016 Mar; 64():60-74. PubMed ID: 26803232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of solvent upon CH...O hydrogen bonds with implications for protein folding.
    Scheiner S; Kar T
    J Phys Chem B; 2005 Mar; 109(8):3681-9. PubMed ID: 16851407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heteropolymer collapse theory for protein folding in the pressure-temperature plane.
    Cheung JK; Shah P; Truskett TM
    Biophys J; 2006 Oct; 91(7):2427-35. PubMed ID: 16844760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse.
    Best RB; Mittal J
    J Phys Chem B; 2010 Nov; 114(46):14916-23. PubMed ID: 21038907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved backbone desolvation and mutational hot spots in folding proteins.
    Fernández A
    Proteins; 2002 Jun; 47(4):447-57. PubMed ID: 12001223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crucial importance of translational entropy of water in pressure denaturation of proteins.
    Harano Y; Kinoshita M
    J Chem Phys; 2006 Jul; 125(2):24910. PubMed ID: 16848614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-similarity and protein compactness.
    Moret MA; Santana MC; Zebende GF; Pascutti PG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041908. PubMed ID: 19905343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general polymer model of unfolded proteins under folding conditions.
    Chen Y; Wedemeyer WJ; Lapidus LJ
    J Phys Chem B; 2010 Dec; 114(48):15969-75. PubMed ID: 21077645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein folding: could hydrophobic collapse be coupled with hydrogen-bond formation?
    Fernández A; Kardos J; Goto Y
    FEBS Lett; 2003 Feb; 536(1-3):187-92. PubMed ID: 12586361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.