BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 32044379)

  • 1. The conserved and divergent roles of Prdm3 and Prdm16 in zebrafish and mouse craniofacial development.
    Shull LC; Sen R; Menzel J; Goyama S; Kurokawa M; Artinger KB
    Dev Biol; 2020 May; 461(2):132-144. PubMed ID: 32044379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PRDM paralogs antagonistically balance Wnt/β-catenin activity during craniofacial chondrocyte differentiation.
    Shull LC; Lencer ES; Kim HM; Goyama S; Kurokawa M; Costello JC; Jones K; Artinger KB
    Development; 2022 Feb; 149(4):. PubMed ID: 35132438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redundant roles of PRDM family members in zebrafish craniofacial development.
    Ding HL; Clouthier DE; Artinger KB
    Dev Dyn; 2013 Jan; 242(1):67-79. PubMed ID: 23109401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct interaction between the PRDM3 and PRDM16 tumor suppressors and the NuRD chromatin remodeling complex.
    Ivanochko D; Halabelian L; Henderson E; Savitsky P; Jain H; Marcon E; Duan S; Hutchinson A; Seitova A; Barsyte-Lovejoy D; Filippakopoulos P; Greenblatt J; Lima-Fernandes E; Arrowsmith CH
    Nucleic Acids Res; 2019 Feb; 47(3):1225-1238. PubMed ID: 30462309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity.
    Pinheiro I; Margueron R; Shukeir N; Eisold M; Fritzsch C; Richter FM; Mittler G; Genoud C; Goyama S; Kurokawa M; Son J; Reinberg D; Lachner M; Jenuwein T
    Cell; 2012 Aug; 150(5):948-60. PubMed ID: 22939622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zebrafish con/disp1 reveals multiple spatiotemporal requirements for Hedgehog-signaling in craniofacial development.
    Schwend T; Ahlgren SC
    BMC Dev Biol; 2009 Nov; 9():59. PubMed ID: 19948063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prdm3 and Prdm16 cooperatively maintain hematopoiesis and clonogenic potential.
    McGlynn KA; Sun R; Vonica A; Rudzinskas S; Zhang Y; Perkins AS
    Exp Hematol; 2020 May; 85():20-32.e3. PubMed ID: 32437910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zebrafish wnt9a is expressed in pharyngeal ectoderm and is required for palate and lower jaw development.
    Curtin E; Hickey G; Kamel G; Davidson AJ; Liao EC
    Mech Dev; 2011; 128(1-2):104-15. PubMed ID: 21093584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prdm1a is necessary for posterior pharyngeal arch development in zebrafish.
    Birkholz DA; Olesnicky Killian EC; George KM; Artinger KB
    Dev Dyn; 2009 Oct; 238(10):2575-87. PubMed ID: 19777590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grainyhead-like Transcription Factors in Craniofacial Development.
    Carpinelli MR; de Vries ME; Jane SM; Dworkin S
    J Dent Res; 2017 Oct; 96(11):1200-1209. PubMed ID: 28697314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The anti-epileptic drug valproic acid causes malformations in the developing craniofacial skeleton of zebrafish larvae.
    Gebuijs IGE; Metz JR; Zethof J; Carels CEL; Wagener FADTG; Von den Hoff JW
    Mech Dev; 2020 Sep; 163():103632. PubMed ID: 32668265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. prdm1a functions upstream of itga5 in zebrafish craniofacial development.
    LaMonica K; Ding HL; Artinger KB
    Genesis; 2015; 53(3-4):270-7. PubMed ID: 25810090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zebrafish Zic2a and Zic2b regulate neural crest and craniofacial development.
    Teslaa JJ; Keller AN; Nyholm MK; Grinblat Y
    Dev Biol; 2013 Aug; 380(1):73-86. PubMed ID: 23665173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foxc1 establishes enhancer accessibility for craniofacial cartilage differentiation.
    Xu P; Yu HV; Tseng KC; Flath M; Fabian P; Segil N; Crump JG
    Elife; 2021 Jan; 10():. PubMed ID: 33501917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vgll2a is required for neural crest cell survival during zebrafish craniofacial development.
    Johnson CW; Hernandez-Lagunas L; Feng W; Melvin VS; Williams T; Artinger KB
    Dev Biol; 2011 Sep; 357(1):269-81. PubMed ID: 21741961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AP2-dependent signals from the ectoderm regulate craniofacial development in the zebrafish embryo.
    Knight RD; Javidan Y; Zhang T; Nelson S; Schilling TF
    Development; 2005 Jul; 132(13):3127-38. PubMed ID: 15944192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface.
    Welsh IC; Hart J; Brown JM; Hansen K; Rocha Marques M; Aho RJ; Grishina I; Hurtado R; Herzlinger D; Ferretti E; Garcia-Garcia MJ; Selleri L
    J Anat; 2018 Aug; 233(2):222-242. PubMed ID: 29797482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SOX3 activity during pharyngeal segmentation is required for craniofacial morphogenesis.
    Rizzoti K; Lovell-Badge R
    Development; 2007 Oct; 134(19):3437-48. PubMed ID: 17728342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of PRDM16 and its PR domain in the epigenetic regulation of myogenic and adipogenic genes during transdifferentiation of C2C12 cells.
    Li X; Wang J; Jiang Z; Guo F; Soloway PD; Zhao R
    Gene; 2015 Oct; 570(2):191-8. PubMed ID: 26071185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos.
    Lindeman LC; Winata CL; Aanes H; Mathavan S; Alestrom P; Collas P
    Int J Dev Biol; 2010; 54(5):803-13. PubMed ID: 20336603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.