These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 32044383)
1. Organic compounds percutaneous penetration in vivo in man: Relationship to mathematical predictive model. Burli A; Law RM; Rodriguez J; Maibach HI Regul Toxicol Pharmacol; 2020 Apr; 112():104614. PubMed ID: 32044383 [TBL] [Abstract][Full Text] [Related]
2. Ability of mathematical models to predict human in vivo percutaneous penetration of steroids. Burli A; Law RM; Maibach HI Regul Toxicol Pharmacol; 2021 Nov; 126():105041. PubMed ID: 34499979 [TBL] [Abstract][Full Text] [Related]
3. Comparison of experimentally determined and mathematically predicted percutaneous penetration rates of chemicals. Korinth G; Schaller KH; Bader M; Bartsch R; Göen T; Rossbach B; Drexler H Arch Toxicol; 2012 Mar; 86(3):423-30. PubMed ID: 22076108 [TBL] [Abstract][Full Text] [Related]
4. In vitro dermal absorption rate testing of certain chemicals of interest to the Occupational Safety and Health Administration: summary and evaluation of USEPA's mandated testing. Fasano WJ; McDougal JN Regul Toxicol Pharmacol; 2008 Jul; 51(2):181-94. PubMed ID: 18501488 [TBL] [Abstract][Full Text] [Related]
5. Molecular structure-based prediction of human abdominal skin permeability coefficients for several organic compounds. Poulin P; Krishnan K J Toxicol Environ Health A; 2001 Feb; 62(3):143-59. PubMed ID: 11212942 [TBL] [Abstract][Full Text] [Related]
6. Percutaneous penetration of drugs applied in transdermal delivery systems: an in vivo based approach for evaluating computer generated penetration models. Keurentjes AJ; Maibach HI Regul Toxicol Pharmacol; 2019 Nov; 108():104428. PubMed ID: 31326435 [TBL] [Abstract][Full Text] [Related]
7. A regression analysis using simple descriptors for multiple dermal datasets: Going from individual membranes to the full skin. Evans MV; Moxon TE; Lian G; Deacon BN; Chen T; Adams LD; Meade A; Wambaugh JF J Appl Toxicol; 2023 Jun; 43(6):940-950. PubMed ID: 36609694 [TBL] [Abstract][Full Text] [Related]
8. The usual suspects-influence of physicochemical properties on lag time, skin deposition, and percutaneous penetration of nine model compounds. Bo Nielsen J; Ahm Sørensen J; Nielsen F J Toxicol Environ Health A; 2009; 72(5):315-23. PubMed ID: 19184747 [TBL] [Abstract][Full Text] [Related]
9. Application of the transformed Potts-Guy equation to in vivo human skin data. Roberts WJ; Sloan KB J Pharm Sci; 2001 Sep; 90(9):1318-23. PubMed ID: 11745784 [TBL] [Abstract][Full Text] [Related]
10. Evaluation on the reliability of the permeability coefficient (K Kladt C; Dennerlein K; Göen T; Drexler H; Korinth G Int Arch Occup Environ Health; 2018 May; 91(4):467-477. PubMed ID: 29468312 [TBL] [Abstract][Full Text] [Related]
11. Dermal permeation data and models for the prioritization and screening-level exposure assessment of organic chemicals. Brown TN; Armitage JM; Egeghy P; Kircanski I; Arnot JA Environ Int; 2016 Sep; 94():424-435. PubMed ID: 27282209 [TBL] [Abstract][Full Text] [Related]
12. Occlusion effect on in vivo percutaneous penetration of chemicals in man and monkey: partition coefficient effects. Hafeez F; Maibach H Skin Pharmacol Physiol; 2013; 26(2):85-91. PubMed ID: 23327987 [TBL] [Abstract][Full Text] [Related]
13. Regarding the sources of data analyzed with quantitative structure-skin permeability relationship methods (commentary on 'Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships'). Frasch HF; Landsittel DP Eur J Pharm Sci; 2002 Jun; 15(5):399-403. PubMed ID: 12036716 [TBL] [Abstract][Full Text] [Related]
14. Predicting the bioconcentration factor of highly hydrophobic organic chemicals. Garg R; Smith CJ Food Chem Toxicol; 2014 Jul; 69():252-9. PubMed ID: 24759698 [TBL] [Abstract][Full Text] [Related]
15. An experimentally based approach for predicting skin permeability of chemicals and drugs using a membrane-coated fiber array. Xia XR; Baynes RE; Monteiro-Riviere NA; Riviere JE Toxicol Appl Pharmacol; 2007 Jun; 221(3):320-8. PubMed ID: 17493652 [TBL] [Abstract][Full Text] [Related]
16. Can models of percutaneous absorption based on in vitro data in frogs predict in vivo absorption? Llewelyn VK; Berger L; Glass BD PLoS One; 2020; 15(7):e0235737. PubMed ID: 32726322 [TBL] [Abstract][Full Text] [Related]
17. Percutaneous absorption of herbicides derived from 2,4-dichlorophenoxyacid: structure-activity relationship. Beydon D; Payan JP; Ferrari E; Grandclaude MC Toxicol In Vitro; 2014 Aug; 28(5):1066-74. PubMed ID: 24803314 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships. Cronin MT; Dearden JC; Moss GP; Murray-Dickson G Eur J Pharm Sci; 1999 Mar; 7(4):325-30. PubMed ID: 9971916 [TBL] [Abstract][Full Text] [Related]
20. In silico prediction of dermal absorption of pesticides - an evaluation of selected models against results from in vitro testing. Eleftheriadou D; Luette S; Kneuer C SAR QSAR Environ Res; 2019 Aug; 30(8):561-585. PubMed ID: 31535949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]