These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32044437)

  • 1. Exploring linearity of deep neural network trained QSM: QSMnet
    Jung W; Yoon J; Ji S; Choi JY; Kim JM; Nam Y; Kim EY; Lee J
    Neuroimage; 2020 May; 211():116619. PubMed ID: 32044437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A preliminary attempt to visualize nigrosome 1 in the substantia nigra for Parkinson's disease at 3T: An efficient susceptibility map-weighted imaging (SMWI) with quantitative susceptibility mapping using deep neural network (QSMnet).
    Jo M; Oh SH
    Med Phys; 2020 Mar; 47(3):1151-1160. PubMed ID: 31883389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative susceptibility mapping using deep neural network: QSMnet.
    Yoon J; Gong E; Chatnuntawech I; Bilgic B; Lee J; Jung W; Ko J; Jung H; Setsompop K; Zaharchuk G; Kim EY; Pauly J; Lee J
    Neuroimage; 2018 Oct; 179():199-206. PubMed ID: 29894829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative susceptibility mapping using multi-channel convolutional neural networks with dipole-adaptive multi-frequency inputs.
    Si W; Guo Y; Zhang Q; Zhang J; Wang Y; Feng Y
    Front Neurosci; 2023; 17():1165446. PubMed ID: 37383103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A multi-channel input convolutional neural network for artifact reduction in quantitative susceptibility mapping].
    Si W; Feng Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2022 Dec; 42(12):1799-1806. PubMed ID: 36651247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. xQSM: quantitative susceptibility mapping with octave convolutional and noise-regularized neural networks.
    Gao Y; Zhu X; Moffat BA; Glarin R; Wilman AH; Pike GB; Crozier S; Liu F; Sun H
    NMR Biomed; 2021 Mar; 34(3):e4461. PubMed ID: 33368705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards in vivo ground truth susceptibility for single-orientation deep learning QSM: A multi-orientation gradient-echo MRI dataset.
    Shi Y; Feng R; Li Z; Zhuang J; Zhang Y; Wei H
    Neuroimage; 2022 Nov; 261():119522. PubMed ID: 35905811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinet-QSM: model-based deep learning with schatten p-norm regularization for improved quantitative susceptibility mapping.
    Venkatesh V; Mathew RS; Yalavarthy PK
    MAGMA; 2024 Jul; 37(3):411-427. PubMed ID: 38598165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based quantitative susceptibility mapping (QSM) in the presence of fat using synthetically generated multi-echo phase training data.
    Hanspach J; Bollmann S; Grigo J; Karius A; Uder M; Laun FB
    Magn Reson Med; 2022 Oct; 88(4):1548-1560. PubMed ID: 35713187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerating quantitative susceptibility and R2* mapping using incoherent undersampling and deep neural network reconstruction.
    Gao Y; Cloos M; Liu F; Crozier S; Pike GB; Sun H
    Neuroimage; 2021 Oct; 240():118404. PubMed ID: 34280526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preconditioned total field inversion (TFI) method for quantitative susceptibility mapping.
    Liu Z; Kee Y; Zhou D; Wang Y; Spincemaille P
    Magn Reson Med; 2017 Jul; 78(1):303-315. PubMed ID: 27464893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning-based single-step quantitative susceptibility mapping reconstruction without brain extraction.
    Wei H; Cao S; Zhang Y; Guan X; Yan F; Yeom KW; Liu C
    Neuroimage; 2019 Nov; 202():116064. PubMed ID: 31377323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep grey matter quantitative susceptibility mapping from small spatial coverages using deep learning.
    Zhu X; Gao Y; Liu F; Crozier S; Sun H
    Z Med Phys; 2022 May; 32(2):188-198. PubMed ID: 34312047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fidelity imposed network edit (FINE) for solving ill-posed image reconstruction.
    Zhang J; Liu Z; Zhang S; Zhang H; Spincemaille P; Nguyen TD; Sabuncu MR; Wang Y
    Neuroimage; 2020 May; 211():116579. PubMed ID: 31981779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instant tissue field and magnetic susceptibility mapping from MRI raw phase using Laplacian enhanced deep neural networks.
    Gao Y; Xiong Z; Fazlollahi A; Nestor PJ; Vegh V; Nasrallah F; Winter C; Pike GB; Crozier S; Liu F; Sun H
    Neuroimage; 2022 Oct; 259():119410. PubMed ID: 35753595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affine transformation edited and refined deep neural network for quantitative susceptibility mapping.
    Xiong Z; Gao Y; Liu F; Sun H
    Neuroimage; 2023 Feb; 267():119842. PubMed ID: 36586542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MoDL-QSM: Model-based deep learning for quantitative susceptibility mapping.
    Feng R; Zhao J; Wang H; Yang B; Feng J; Shi Y; Zhang M; Liu C; Zhang Y; Zhuang J; Wei H
    Neuroimage; 2021 Oct; 240():118376. PubMed ID: 34246768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learn Less, Infer More: Learning in the Fourier Domain for Quantitative Susceptibility Mapping.
    He J; Wang L; Cao Y; Wang R; Zhu Y
    Front Neurosci; 2022; 16():837721. PubMed ID: 35250469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative susceptibility mapping (QSM) as a means to monitor cerebral hematoma treatment.
    Zhang Y; Wei H; Sun Y; Cronin MJ; He N; Xu J; Zhou Y; Liu C
    J Magn Reson Imaging; 2018 Oct; 48(4):907-915. PubMed ID: 29380461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SHARQnet - Sophisticated harmonic artifact reduction in quantitative susceptibility mapping using a deep convolutional neural network.
    Bollmann S; Kristensen MH; Larsen MS; Olsen MV; Pedersen MJ; Østergaard LR; O'Brien K; Langkammer C; Fazlollahi A; Barth M
    Z Med Phys; 2019 May; 29(2):139-149. PubMed ID: 30773331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.