BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32044459)

  • 1. The bioeffects of degradable products derived from a biodegradable Mg-based alloy in macrophages via heterophagy.
    Jin L; Chen C; Jia G; Li Y; Zhang J; Huang H; Kang B; Yuan G; Zeng H; Chen T
    Acta Biomater; 2020 Apr; 106():428-438. PubMed ID: 32044459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Biodegradable Mg-Based Alloy Inhibited the Inflammatory Response of THP-1 Cell-Derived Macrophages Through the TRPM7-PI3K-AKT1 Signaling Axis.
    Jin L; Chen C; Li Y; Yuan F; Gong R; Wu J; Zhang H; Kang B; Yuan G; Zeng H; Chen T
    Front Immunol; 2019; 10():2798. PubMed ID: 31849975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of macrophages on in vitro corrosion behavior of magnesium alloy.
    Zhang J; Hiromoto S; Yamazaki T; Niu J; Huang H; Jia G; Li H; Ding W; Yuan G
    J Biomed Mater Res A; 2016 Oct; 104(10):2476-87. PubMed ID: 27223576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements.
    Chen Y; Dou J; Yu H; Chen C
    J Biomater Appl; 2019 May; 33(10):1348-1372. PubMed ID: 30854910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro degradation and cell viability assessment of Zn-3Mg alloy for biodegradable bone implants.
    Dambatta MS; Murni NS; Izman S; Kurniawan D; Froemming GR; Hermawan H
    Proc Inst Mech Eng H; 2015 May; 229(5):335-42. PubMed ID: 25991712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro study of the inflammatory cells response to biodegradable Mg-based alloy extract.
    Jin L; Wu J; Yuan G; Chen T
    PLoS One; 2018; 13(3):e0193276. PubMed ID: 29538391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gadolinium accumulation in organs of Sprague-Dawley® rats after implantation of a biodegradable magnesium-gadolinium alloy.
    Myrissa A; Braeuer S; Martinelli E; Willumeit-Römer R; Goessler W; Weinberg AM
    Acta Biomater; 2017 Jan; 48():521-529. PubMed ID: 27845277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of unsoluble corrosion products of WE43 alloys in vitro on macrophages.
    Dong L; Shen Z; Zhang H; Zhang B; Zhou Y; Lv X; Hong X; Liu J; Yang W
    J Biomed Mater Res A; 2024 Jan; 112(1):6-19. PubMed ID: 37681297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study.
    Zhang J; Li H; Wang W; Huang H; Pei J; Qu H; Yuan G; Li Y
    Acta Biomater; 2018 Mar; 69():372-384. PubMed ID: 29369807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo characterization of magnesium alloy biodegradation using electrochemical H
    Zhao D; Wang T; Nahan K; Guo X; Zhang Z; Dong Z; Chen S; Chou DT; Hong D; Kumta PN; Heineman WR
    Acta Biomater; 2017 Mar; 50():556-565. PubMed ID: 28069511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal.
    Willbold E; Kalla K; Bartsch I; Bobe K; Brauneis M; Remennik S; Shechtman D; Nellesen J; Tillmann W; Vogt C; Witte F
    Acta Biomater; 2013 Nov; 9(10):8509-17. PubMed ID: 23416472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications.
    Makkar P; Sarkar SK; Padalhin AR; Moon BG; Lee YS; Lee BT
    J Appl Biomater Funct Mater; 2018 Jul; 16(3):126-136. PubMed ID: 29607729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable magnesium alloys as temporary orthopaedic implants: a review.
    Kamrani S; Fleck C
    Biometals; 2019 Apr; 32(2):185-193. PubMed ID: 30659451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents.
    Mao L; Shen L; Niu J; Zhang J; Ding W; Wu Y; Fan R; Yuan G
    Nanoscale; 2013 Oct; 5(20):9517-22. PubMed ID: 23989064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation on the in vitro cytocompatibility of Mg-Zn-Y-Nd-Zr alloys as degradable orthopaedic implant materials.
    Song X; Chang L; Wang J; Zhu S; Wang L; Feng K; Luo Y; Guan S
    J Mater Sci Mater Med; 2018 Mar; 29(4):44. PubMed ID: 29603023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells.
    Liu Y; Wu Y; Bian D; Gao S; Leeflang S; Guo H; Zheng Y; Zhou J
    Acta Biomater; 2017 Oct; 62():418-433. PubMed ID: 28823717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy.
    Zhang X; Yuan G; Mao L; Niu J; Fu P; Ding W
    J Mech Behav Biomed Mater; 2012 Mar; 7():77-86. PubMed ID: 22340687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophage phagocytosis of biomedical Mg alloy degradation products prepared by electrochemical method.
    Zhang J; Hiromoto S; Yamazaki T; Huang H; Jia G; Li H; Yuan G
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1178-1183. PubMed ID: 28415404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthopedic implant cobalt-alloy particles produce greater toxicity and inflammatory cytokines than titanium alloy and zirconium alloy-based particles in vitro, in human osteoblasts, fibroblasts, and macrophages.
    Dalal A; Pawar V; McAllister K; Weaver C; Hallab NJ
    J Biomed Mater Res A; 2012 Aug; 100(8):2147-58. PubMed ID: 22615169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios.
    Zhang X; Yuan G; Niu J; Fu P; Ding W
    J Mech Behav Biomed Mater; 2012 May; 9():153-62. PubMed ID: 22498293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.