These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 32044492)

  • 21. An activated sludge modeling framework for xenobiotic trace chemicals (ASM-X): assessment of diclofenac and carbamazepine.
    Plósz BG; Langford KH; Thomas KV
    Biotechnol Bioeng; 2012 Nov; 109(11):2757-69. PubMed ID: 22565415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent.
    Bonvin F; Jost L; Randin L; Bonvin E; Kohn T
    Water Res; 2016 Mar; 90():90-99. PubMed ID: 26724443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrating organic micropollutant removal into tertiary filtration: Combining PAC adsorption with advanced phosphorus removal.
    Altmann J; Sperlich A; Jekel M
    Water Res; 2015 Nov; 84():58-65. PubMed ID: 26210030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulating Effluent Organic Matter Competition in Micropollutant Adsorption onto Activated Carbon Using a Surrogate Competitor.
    Dittmar S; Zietzschmann F; Mai M; Worch E; Jekel M; Ruhl AS
    Environ Sci Technol; 2018 Jul; 52(14):7859-7866. PubMed ID: 29890066
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid small-scale column testing of granular activated carbon for organic micro-pollutant removal in treated domestic wastewater.
    Zietzschmann F; Müller J; Sperlich A; Ruhl AS; Meinel F; Altmann J; Jekel M
    Water Sci Technol; 2014; 70(7):1271-8. PubMed ID: 25325553
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal efficiency and mass balance of polycyclic aromatic hydrocarbons, phthalates, ethoxylated alkylphenols and alkylphenols in a mixed textile-domestic wastewater treatment plant.
    Berardi C; Fibbi D; Coppini E; Renai L; Caprini C; Scordo CVA; Checchini L; Orlandini S; Bruzzoniti MC; Del Bubba M
    Sci Total Environ; 2019 Jul; 674():36-48. PubMed ID: 31003086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems.
    Paredes L; Fernandez-Fontaina E; Lema JM; Omil F; Carballa M
    Sci Total Environ; 2016 May; 551-552():640-8. PubMed ID: 26897407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The potential of the innovative SeMPAC process for enhancing the removal of recalcitrant organic micropollutants.
    Alvarino T; Komesli O; Suarez S; Lema JM; Omil F
    J Hazard Mater; 2016 May; 308():29-36. PubMed ID: 26808240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge?
    Gonzalez-Gil L; Papa M; Feretti D; Ceretti E; Mazzoleni G; Steimberg N; Pedrazzani R; Bertanza G; Lema JM; Carballa M
    Water Res; 2016 Oct; 102():211-220. PubMed ID: 27344252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of two treatments for the removal of selected organic micropollutants and bulk organic matter: conventional activated sludge followed by ultrafiltration versus membrane bioreactor.
    Sahar E; Ernst M; Godehardt M; Hein A; Herr J; Kazner C; Melin T; Cikurel H; Aharoni A; Messalem R; Brenner A; Jekel M
    Water Sci Technol; 2011; 63(4):733-40. PubMed ID: 21330721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large scale micropollutants and lipids screening in the sludge layers and the ecosystem of a vertical flow constructed wetland.
    Maurer L; Villette C; Zumsteg J; Wanko A; Heintz D
    Sci Total Environ; 2020 Dec; 746():141196. PubMed ID: 32771759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A tiered procedure for assessing the formation of biotransformation products of pharmaceuticals and biocides during activated sludge treatment.
    Kern S; Baumgartner R; Helbling DE; Hollender J; Singer H; Loos MJ; Schwarzenbach RP; Fenner K
    J Environ Monit; 2010 Nov; 12(11):2100-11. PubMed ID: 20967365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-barrier approach for removing organic micropollutants using mobile water treatment systems.
    Yu Y; Choi YH; Choi J; Choi S; Maeng SK
    Sci Total Environ; 2018 Oct; 639():331-338. PubMed ID: 29791885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The fate of microplastics in an Italian Wastewater Treatment Plant.
    Magni S; Binelli A; Pittura L; Avio CG; Della Torre C; Parenti CC; Gorbi S; Regoli F
    Sci Total Environ; 2019 Feb; 652():602-610. PubMed ID: 30368189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The solids retention time-a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants.
    Clara M; Kreuzinger N; Strenn B; Gans O; Kroiss H
    Water Res; 2005 Jan; 39(1):97-106. PubMed ID: 15607169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organic micropollutants (OMPs) in natural waters: Oxidation by UV/H2O2 treatment and toxicity assessment.
    Rozas O; Vidal C; Baeza C; Jardim WF; Rossner A; Mansilla HD
    Water Res; 2016 Jul; 98():109-18. PubMed ID: 27085962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A predictive multi-linear regression model for organic micropollutants, based on a laboratory-scale column study simulating the river bank filtration process.
    Bertelkamp C; Verliefde AR; Reynisson J; Singhal N; Cabo AJ; de Jonge M; van der Hoek JP
    J Hazard Mater; 2016 Mar; 304():502-11. PubMed ID: 26619049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Natural versus wastewater derived dissolved organic carbon: implications for the environmental fate of organic micropollutants.
    Neale PA; Antony A; Gernjak W; Leslie G; Escher BI
    Water Res; 2011 Aug; 45(14):4227-37. PubMed ID: 21703657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micropollutants removal in an anaerobic membrane bioreactor and in an aerobic conventional treatment plant.
    Abargues MR; Robles A; Bouzas A; Seco A
    Water Sci Technol; 2012; 65(12):2242-50. PubMed ID: 22643422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The fate of selected micropollutants in a single-house MBR.
    Abegglen C; Joss A; McArdell CS; Fink G; Schlüsener MP; Ternes TA; Siegrist H
    Water Res; 2009 Apr; 43(7):2036-46. PubMed ID: 19269669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.