These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32044498)

  • 1. What occurs in colloidal gas aphron-induced separation of titanium dioxide nanoparticles? Particle fate analysis by tracking technologies.
    Zhang M; Yang J; Tang L; Pan X; Zhang D
    Sci Total Environ; 2020 May; 716():137104. PubMed ID: 32044498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-modified microbubbles (colloidal gas aphrons) for nanoparticle removal in a continuous bubble generation-flotation separation system.
    Zhang M; Guiraud P
    Water Res; 2017 Dec; 126():399-410. PubMed ID: 28987891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyaluminum chloride-functionalized colloidal gas aphrons for flotation separation of nanoparticles from water.
    Zhang M; Lu X; Zhou Q; Xie L; Shen C
    J Hazard Mater; 2019 Jan; 362():196-205. PubMed ID: 30240993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine.
    Badalova K; Herbello-Hermelo P; Bermejo-Barrera P; Moreda-Piñeiro A
    J Trace Elem Med Biol; 2019 Jul; 54():55-61. PubMed ID: 31109621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle tracking analysis versus dynamic light scattering: Case study on the effect of Ca
    Hou J; Ci H; Wang P; Wang C; Lv B; Miao L; You G
    J Hazard Mater; 2018 Oct; 360():319-328. PubMed ID: 30125748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aphron applications--a review of recent and current research.
    Molaei A; Waters KE
    Adv Colloid Interface Sci; 2015 Feb; 216():36-54. PubMed ID: 25578407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single particle analysis of TiO
    Candás-Zapico S; Kutscher DJ; Montes-Bayón M; Bettmer J
    Talanta; 2018 Apr; 180():309-315. PubMed ID: 29332815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization and characterization of colloidal gas aphron dispersions.
    Dai Y; Deng T
    J Colloid Interface Sci; 2003 May; 261(2):360-5. PubMed ID: 16256542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing nanoparticle colloidal stability with single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS).
    Donahue ND; Francek ER; Kiyotake E; Thomas EE; Yang W; Wang L; Detamore MS; Wilhelm S
    Anal Bioanal Chem; 2020 Sep; 412(22):5205-5216. PubMed ID: 32627086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of particle size methodology and assessment of nanoparticle tracking analysis (NTA) as a tool for live monitoring of crystallisation pathways.
    McComiskey KPM; Tajber L
    Eur J Pharm Biopharm; 2018 Sep; 130():314-326. PubMed ID: 30012404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titanium Dioxide in Food Products: Quantitative Analysis Using ICP-MS and Raman Spectroscopy.
    Lim JH; Bae D; Fong A
    J Agric Food Chem; 2018 Dec; 66(51):13533-13540. PubMed ID: 30513207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimisation and application of an analytical approach for the characterisation of TiO
    Givelet L; Truffier-Boutry D; Noël L; Damlencourt JF; Jitaru P; Guérin T
    Talanta; 2021 Mar; 224():121873. PubMed ID: 33379082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters.
    Li L; Sillanpää M; Risto M
    Environ Pollut; 2016 Dec; 219():132-138. PubMed ID: 27814528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal variation in TiO
    Nabi MM; Wang J; Goharian E; Baalousha M
    Sci Total Environ; 2022 Feb; 807(Pt 3):151081. PubMed ID: 34678372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle Sizing of Nanoparticle Adjuvant Formulations by Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA).
    Chan MY; Dowling QM; Sivananthan SJ; Kramer RM
    Methods Mol Biol; 2017; 1494():239-252. PubMed ID: 27718198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic evaluation of Flow Field Flow Fractionation and single-particle ICP-MS to obtain the size distribution of organo-mineral iron oxyhydroxide colloids.
    Moens C; Waegeneers N; Fritzsche A; Nobels P; Smolders E
    J Chromatogr A; 2019 Aug; 1599():203-214. PubMed ID: 31047657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound assisted enzymatic hydrolysis for isolating titanium dioxide nanoparticles from bivalve mollusk before sp-ICP-MS.
    Taboada-López MV; Iglesias-López S; Herbello-Hermelo P; Bermejo-Barrera P; Moreda-Piñeiro A
    Anal Chim Acta; 2018 Aug; 1018():16-25. PubMed ID: 29605130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lability-specific enrichment of typical engineered metal (oxide) nanoparticles by surface-functionalized microbubbles from waters.
    Zhang M; Yang J; Tang L; Zhang D; Pan X
    Sci Total Environ; 2020 Jun; 719():137526. PubMed ID: 32120116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical Considerations for Detection and Characterization of Sub-Micron Particles in Protein Solutions by Nanoparticle Tracking Analysis.
    Gruia F; Parupudi A; Polozova A
    PDA J Pharm Sci Technol; 2015; 69(3):427-39. PubMed ID: 26048748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of pH and ionic strength in the aggregation of TiO
    Lin D; Story SD; Walker SL; Huang Q; Liang W; Cai P
    Environ Pollut; 2017 Sep; 228():35-42. PubMed ID: 28511037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.