These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
456 related articles for article (PubMed ID: 32044548)
1. Converting industrial waste cork to biochar as Cu (II) adsorbent via slow pyrolysis. Wang Q; Lai Z; Mu J; Chu D; Zang X Waste Manag; 2020 Mar; 105():102-109. PubMed ID: 32044548 [TBL] [Abstract][Full Text] [Related]
2. [Cadmium adsorption by biochar prepared from pyrolysis of silk waste at different temperatures]. Ji HY; Wang YY; Lyu HH; Liu YX; Yang RQ; Yang SM Ying Yong Sheng Tai Xue Bao; 2018 Apr; 29(4):1328-1338. PubMed ID: 29726244 [TBL] [Abstract][Full Text] [Related]
3. Physicochemical properties and lead ion adsorption of biochar prepared from Turkish gall residue at different pyrolysis temperatures. Zhou XY; Xie F; Jiang M; Ke-Ao L; Tian SG Microsc Res Tech; 2021 May; 84(5):1003-1011. PubMed ID: 33615646 [TBL] [Abstract][Full Text] [Related]
4. Adsorption characteristics and mechanism of Pb(II) by agricultural waste-derived biochars produced from a pilot-scale pyrolysis system. Liu L; Huang Y; Zhang S; Gong Y; Su Y; Cao J; Hu H Waste Manag; 2019 Dec; 100():287-295. PubMed ID: 31568977 [TBL] [Abstract][Full Text] [Related]
5. Optimization of target biochar for the adsorption of target heavy metal ion. Zhou R; Zhang M; Shao S Sci Rep; 2022 Aug; 12(1):13662. PubMed ID: 35953641 [TBL] [Abstract][Full Text] [Related]
6. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. Huff MD; Kumar S; Lee JW J Environ Manage; 2014 Dec; 146():303-308. PubMed ID: 25190598 [TBL] [Abstract][Full Text] [Related]
7. Enhanced adsorption capacity of tetracycline on tea waste biochar with KHCO Li B; Huang Y; Wang Z; Li J; Liu Z; Fan S Environ Sci Pollut Res Int; 2021 Aug; 28(32):44140-44151. PubMed ID: 33844143 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Pariyar P; Kumari K; Jain MK; Jadhao PS Sci Total Environ; 2020 Apr; 713():136433. PubMed ID: 31954240 [TBL] [Abstract][Full Text] [Related]
9. Characterization of biochars derived from various spent mushroom substrates and evaluation of their adsorption performance of Cu(II) ions from aqueous solution. Jin Y; Zhang M; Jin Z; Wang G; Li R; Zhang X; Liu X; Qu J; Wang H Environ Res; 2021 May; 196():110323. PubMed ID: 33098819 [TBL] [Abstract][Full Text] [Related]
10. Saccharide-derived microporous spherical biochar prepared from hydrothermal carbonization and different pyrolysis temperatures: synthesis, characterization, and application in water treatment. Tran HN; Lee CK; Nguyen TV; Chao HP Environ Technol; 2018 Nov; 39(21):2747-2760. PubMed ID: 28791934 [TBL] [Abstract][Full Text] [Related]
11. Constructing the vacancies and defects by hemp stem core alkali extraction residue biochar for highly effective removal of heavy metal ions. He T; Liu Z; Zhou W; Cheng X; He L; Guan Q; Zhou H J Environ Manage; 2022 Dec; 323():116256. PubMed ID: 36126592 [TBL] [Abstract][Full Text] [Related]
12. A facile pyrolysis synthesis of biochar/ZnO passivator: immobilization behavior and mechanisms for Cu (II) in soil. Wang Y; Wang L; Deng X; Gao H Environ Sci Pollut Res Int; 2020 Jan; 27(2):1888-1897. PubMed ID: 31758482 [TBL] [Abstract][Full Text] [Related]
13. New Separation Material Obtained from Waste Rapeseed Cake for Copper(II) and Zinc(II) Removal from the Industrial Wastewater. Mazurek K; Drużyński S; Kiełkowska U; Szłyk E Materials (Basel); 2021 May; 14(10):. PubMed ID: 34069285 [TBL] [Abstract][Full Text] [Related]
14. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Hassan M; Liu Y; Naidu R; Parikh SJ; Du J; Qi F; Willett IR Sci Total Environ; 2020 Nov; 744():140714. PubMed ID: 32717463 [TBL] [Abstract][Full Text] [Related]
15. Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment. Meng J; Wang L; Liu X; Wu J; Brookes PC; Xu J Bioresour Technol; 2013 Aug; 142():641-6. PubMed ID: 23774223 [TBL] [Abstract][Full Text] [Related]
16. Adsorption of hydrogen sulfide by biochars derived from pyrolysis of different agricultural/forestry wastes. Shang G; Li Q; Liu L; Chen P; Huang X J Air Waste Manag Assoc; 2016 Jan; 66(1):8-16. PubMed ID: 26447857 [TBL] [Abstract][Full Text] [Related]
17. Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor. Wei L; Huang Y; Li Y; Huang L; Mar NN; Huang Q; Liu Z Environ Sci Pollut Res Int; 2017 Feb; 24(5):4552-4561. PubMed ID: 27957688 [TBL] [Abstract][Full Text] [Related]
18. Pyrolysis wastewater treatment by adsorption on biochars produced by poplar biomass. de Caprariis B; De Filippis P; Hernandez AD; Petrucci E; Petrullo A; Scarsella M; Turchi M J Environ Manage; 2017 Jul; 197():231-238. PubMed ID: 28391096 [TBL] [Abstract][Full Text] [Related]
19. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Kwak JH; Islam MS; Wang S; Messele SA; Naeth MA; El-Din MG; Chang SX Chemosphere; 2019 Sep; 231():393-404. PubMed ID: 31146131 [TBL] [Abstract][Full Text] [Related]
20. Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar. Wei J; Tu C; Yuan G; Liu Y; Bi D; Xiao L; Lu J; Theng BKG; Wang H; Zhang L; Zhang X Environ Pollut; 2019 Aug; 251():56-65. PubMed ID: 31071633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]