These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32044596)

  • 1. Oil-mineral flocculation and settling velocity in saline water.
    Ye L; Manning AJ; Hsu TJ
    Water Res; 2020 Apr; 173():115569. PubMed ID: 32044596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of suspended extracellular polymeric substance (EPS) on equilibrium flocculation of clay minerals in high salinity water.
    Ye L; Wu J; Huang M; Yan J
    Water Res; 2023 Oct; 244():120451. PubMed ID: 37582321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Settling of dilbit-derived oil-mineral aggregates (OMAs) & transport parameters for oil spill modelling.
    O'Laughlin CM; Law BA; Zions VS; King TL; Robinson B; Wu Y
    Mar Pollut Bull; 2017 Nov; 124(1):292-302. PubMed ID: 28751027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and sedimentation of oil-mineral aggregates in the presence of chemical dispersant.
    Li W; Qi Z; Xiong D; Wu Y; Wang W; Qi Y; Guo J
    Environ Sci Process Impacts; 2023 Dec; 25(12):1937-1944. PubMed ID: 37786335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of fractal flocculation and vertical transport model to aquatic sol-sediment systems.
    Sterling MC; Bonner JS; Ernest AN; Page CA; Autenrieth RL
    Water Res; 2005 May; 39(9):1818-30. PubMed ID: 15899280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling crude oil droplet-sediment aggregation in nearshore waters.
    Sterling MC; Bonner JS; Page CA; Fuller CB; Ernest AN; Autenrieth RL
    Environ Sci Technol; 2004 Sep; 38(17):4627-34. PubMed ID: 15461172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced oil-mineral aggregation with modified bentonite.
    Chen L; Zhou Y; Wang X; Zwicker T; Lu J
    Water Sci Technol; 2013; 67(7):1581-9. PubMed ID: 23552248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A synthetic and transparent clay removes Microcystis aeruginosa efficiently.
    Li Y; Hondzo M; Yang JQ
    Harmful Algae; 2024 Aug; 137():102667. PubMed ID: 39003027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the ability of calcite, bentonite and barite to enhance oil dispersion under arctic conditions.
    Jézéquel R; Receveur J; Nedwed T; Le Floch S
    Mar Pollut Bull; 2018 Feb; 127():626-636. PubMed ID: 29475706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of salinity and clay type on oil-mineral aggregation.
    Khelifa A; Stoffyn-Egli P; Hill PS; Lee K
    Mar Environ Res; 2005 Apr; 59(3):235-54. PubMed ID: 15465132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of turbulent aggregation on clay floc breakup and implications for the oceanic environment.
    Rau MJ; Ackleson SG; Smith GB
    PLoS One; 2018; 13(12):e0207809. PubMed ID: 30521537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigations on the vertical distribution and properties of oil-mineral aggregates (OMAs) formed by different clay minerals.
    Yu Y; Qi Z; Xiong D; Li W; Yu X; Sun R
    J Environ Manage; 2022 Mar; 311():114844. PubMed ID: 35276564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between dissolved petroleum hydrocarbons and pure and humic acid-coated mineral surfaces in artificial seawater.
    Shen L; Jaffé R
    Mar Environ Res; 2000 Apr; 49(3):217-31. PubMed ID: 11285727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flocculation kinetics and mechanisms of microalgae- and clay-containing suspensions in different microalgal growth phases.
    Ho QN; Fettweis M; Hur J; Desmit X; Kim JI; Jung DW; Lee SD; Lee S; Choi YY; Lee BJ
    Water Res; 2022 Nov; 226():119300. PubMed ID: 36323221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volumetric reconstruction of settling mud flocs: A new insight of equilibrium flocculation in saline water.
    Ye L; Chen Z; Chen L; Ren J; Wu J; Chen Y; Huang X; Chen H; Guo Y
    Water Res; 2024 May; 255():121512. PubMed ID: 38554637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curli production enhances clay-E. coli aggregation and sedimentation.
    Cohen N; Zhou H; Hay AG; Radian A
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110361. PubMed ID: 31351270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved dewatering behavior of clay minerals dispersions via interfacial chemistry and particle interactions optimization.
    McFarlane A; Bremmell K; Addai-Mensah J
    J Colloid Interface Sci; 2006 Jan; 293(1):116-27. PubMed ID: 16038921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of oil-particle aggregates: Impacts of mixing energy and duration.
    Ji W; Boufadel M; Zhao L; Robinson B; King T; An C; Zhang BH; Lee K
    Sci Total Environ; 2021 Nov; 795():148781. PubMed ID: 34252767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear-induced flocculation of a suspension of kaolinite as function of pH and salt concentration.
    Mietta F; Chassagne C; Winterwerp JC
    J Colloid Interface Sci; 2009 Aug; 336(1):134-41. PubMed ID: 19423126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.
    Ugochukwu UC; Fialips CI
    Chemosphere; 2017 Jul; 178():65-72. PubMed ID: 28319743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.