These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 32044639)
41. Dewatering of sewage sludge via thermal hydrolysis with ammonia-treated Fenton iron sludge as skeleton material. Xu ZX; Song H; Deng XQ; Zhang YY; Xue-Qin M; Tong SQ; He ZX; Wang Q; Shao YW; Hu X J Hazard Mater; 2019 Nov; 379():120810. PubMed ID: 31255849 [TBL] [Abstract][Full Text] [Related]
42. Enhancing sludge dewatering efficiency through bioleaching facilitated by increasing reactive oxygen species. Li T; Yang J; Zhou Y; Luo Y; Zhou B; Fang D; Li J; Zhou L Water Res; 2023 Mar; 231():119622. PubMed ID: 36680824 [TBL] [Abstract][Full Text] [Related]
43. Synergetic conditioning via oxalic acid enhanced Fe Xiong Y; Lai J; Liu Z; Song M Chemosphere; 2024 Jun; 358():142115. PubMed ID: 38657689 [TBL] [Abstract][Full Text] [Related]
44. Role of extracellular polymeric substances in improvement of sludge dewaterability through peroxidation. Zhou X; Jiang G; Zhang T; Wang Q; Xie GJ; Yuan Z Bioresour Technol; 2015 Sep; 192():817-20. PubMed ID: 26048692 [TBL] [Abstract][Full Text] [Related]
45. Enhancement of waste activated sludge dewaterability by ultrasound-activated persulfate oxidation: Operation condition, sludge properties, and mechanisms. Bian C; Ge D; Wang G; Dong Y; Li W; Zhu N; Yuan H Chemosphere; 2021 Jan; 262():128385. PubMed ID: 33182129 [TBL] [Abstract][Full Text] [Related]
46. Employing Electrochemical-Fenton process for conditioning and dewatering of anaerobically digested sludge: A novel approach. Masihi H; Badalians Gholikandi G Water Res; 2018 Nov; 144():373-382. PubMed ID: 30055427 [TBL] [Abstract][Full Text] [Related]
47. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation. Chen Z; Zhang W; Wang D; Ma T; Bai R; Yu D Water Res; 2016 Oct; 103():170-181. PubMed ID: 27450355 [TBL] [Abstract][Full Text] [Related]
48. Improved sludge dewaterability by tannic acid conditioning: Temperature, thermodynamics and mechanism studies. Ge D; Yuan H; Shen Y; Zhang W; Zhu N Chemosphere; 2019 Sep; 230():14-23. PubMed ID: 31102867 [TBL] [Abstract][Full Text] [Related]
49. Acidic and hydrogen peroxide treatment of polyaluminum chloride (PACL) sludge from water treatment. Kwon JH; Park KY; Park JH; Lee SH; Ahn KH Water Sci Technol; 2004; 50(9):99-105. PubMed ID: 15581000 [TBL] [Abstract][Full Text] [Related]
50. Progress of improving waste activated sludge dewaterability: Influence factors, conditioning technologies and implications and perspectives. Yuan H; Zhu N Sci Total Environ; 2024 Feb; 912():168605. PubMed ID: 37989393 [TBL] [Abstract][Full Text] [Related]
51. Comprehensive investigation of the relationship between organic content and waste activated sludge dewaterability. Wang HF; Hu H; Wang HJ; Bai YN; Shen XF; Zhang W; Zeng RJ J Hazard Mater; 2020 Jul; 394():122547. PubMed ID: 32289621 [TBL] [Abstract][Full Text] [Related]
52. Enhancing the dewaterability of waste activated sludge by the combined ascorbic acid and zero-valent iron/persulfate system. Yuan L; Liu H; Lu Y; Lu Y; Wang D Chemosphere; 2022 Sep; 303(Pt 2):135104. PubMed ID: 35623430 [TBL] [Abstract][Full Text] [Related]
53. Enhanced dewaterability of waste-activated sludge with zero-valent iron-activated persulfate oxidation under mild hydrothermal conditions. Li P; Yu Y; Zhu L; Zhou Z; Zhang W; Wu P; Yu R Water Sci Technol; 2022 Feb; 85(3):851-861. PubMed ID: 35166705 [TBL] [Abstract][Full Text] [Related]
54. Persulfate and zero valent iron combined conditioning as a sustainable technique for enhancing dewaterability of aerobically digested sludge. Ni BJ; Yan X; Sun J; Chen X; Peng L; Wei W; Wang D; Mao S; Dai X; Wang Q Chemosphere; 2019 Oct; 232():45-53. PubMed ID: 31152902 [TBL] [Abstract][Full Text] [Related]
55. Potentially toxic element release by fenton oxidation of sewage sludge. Andrews JP; Asaadi M; Clarke B; Ouki S Water Sci Technol; 2006; 54(5):197-205. PubMed ID: 17087386 [TBL] [Abstract][Full Text] [Related]
56. Peroxide/Zero-valent iron (Fe Li Y; Xu Q; Liu X; Wang Y; Wang D; Yang G; Yuan X; Yang F; Huang J; Wu Z J Hazard Mater; 2020 Dec; 400():123112. PubMed ID: 32947734 [TBL] [Abstract][Full Text] [Related]
57. The role of microstructure of extracellular proteins in dewaterability of alkaline pretreatment sludge during bioleaching. Li Y; Quan L; Li J; Zhang Z; Lv J; Fu C; Chen Z Environ Res; 2024 Mar; 244():117969. PubMed ID: 38109956 [TBL] [Abstract][Full Text] [Related]
58. Mechanistic insights into a novel nitrilotriacetic acid-Fe Liang J; Zhang L; Yan W; Zhou Y Water Res; 2020 Oct; 184():116149. PubMed ID: 32750584 [TBL] [Abstract][Full Text] [Related]
59. A comprehensive insight into the combined effects of Fenton's reagent and skeleton builders on sludge deep dewatering performance. Liu H; Yang J; Zhu N; Zhang H; Li Y; He S; Yang C; Yao H J Hazard Mater; 2013 Aug; 258-259():144-50. PubMed ID: 23721731 [TBL] [Abstract][Full Text] [Related]
60. Enhanced dewaterability of sewage sludge with zero-valent iron-activated persulfate oxidation system. Hu L; Liao Y; He C; Pan W; Liu S; Yang Y; Li S; Sun L Water Sci Technol; 2015; 72(2):245-51. PubMed ID: 26177407 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]