These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 32044710)
41. A ratiometric nanosensor based on conjugated polyelectrolyte-stabilized AgNPs for ultrasensitive fluorescent and colorimetric sensing of melamine. Zhu X; Xiao Y; Jiang X; Li J; Qin H; Huang H; Zhang Y; He X; Wang K Talanta; 2016 May; 151():68-74. PubMed ID: 26946011 [TBL] [Abstract][Full Text] [Related]
42. Rapid sensing of melamine in milk by interference green synthesis of silver nanoparticles. Varun S; Kiruba Daniel SCG; Gorthi SS Mater Sci Eng C Mater Biol Appl; 2017 May; 74():253-258. PubMed ID: 28254292 [TBL] [Abstract][Full Text] [Related]
43. SERS-based sensing technique for trace melamine detection - A new method exploring. Zhuang H; Zhu W; Yao Z; Li M; Zhao Y Talanta; 2016 Jun; 153():186-90. PubMed ID: 27130107 [TBL] [Abstract][Full Text] [Related]
44. [Rapid determination of melamine in pet food by surface enhanced Raman spectroscopy in combination with Ag nanoparticles]. Cheng J; Su XO Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jan; 31(1):131-5. PubMed ID: 21428073 [TBL] [Abstract][Full Text] [Related]
45. Ultrasensitive detection of contaminants in milk using a novel NMS-Ag modified water-resistant paper substrate. Su R; Li S; Su Y; Wang Z; Gao M Food Chem; 2024 Dec; 461():140843. PubMed ID: 39178549 [TBL] [Abstract][Full Text] [Related]
46. Colorimetric detection of melamine during the formation of gold nanoparticles. Wu Z; Zhao H; Xue Y; Cao Q; Yang J; He Y; Li X; Yuan Z Biosens Bioelectron; 2011 Jan; 26(5):2574-8. PubMed ID: 21146396 [TBL] [Abstract][Full Text] [Related]
47. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS. Hussain A; Sun DW; Pu H Food Chem; 2020 Jul; 317():126429. PubMed ID: 32109658 [TBL] [Abstract][Full Text] [Related]
48. Selective determination of melamine in milk samples using 3-mercapto-1-propanesulfonate-modified gold nanoparticles as colorimetric probe. Su H; Fan H; Ai S; Wu N; Fan H; Bian P; Liu J Talanta; 2011 Sep; 85(3):1338-43. PubMed ID: 21807192 [TBL] [Abstract][Full Text] [Related]
49. Aptamer-functionalized AuNPs for the high-sensitivity colorimetric detection of melamine in milk samples. Hu X; Chang K; Wang S; Sun X; Hu J; Jiang M PLoS One; 2018; 13(8):e0201626. PubMed ID: 30071096 [TBL] [Abstract][Full Text] [Related]
50. Highly Sensitive Aptamer-Based Colorimetric Detection of Melamine in Raw Milk with Cysteamine-Stabilized Gold Nanoparticles. Zheng H; Li Y; Xu J; Bie J; Liu X; Guo J; Luo Y; Shen F; Sun C; Yu Y J Nanosci Nanotechnol; 2017 Feb; 17(2):853-61. PubMed ID: 29668219 [TBL] [Abstract][Full Text] [Related]
51. Colorimetric detection of melamine in complex matrices based on cysteamine-modified gold nanoparticles. Liang X; Wei H; Cui Z; Deng J; Zhang Z; You X; Zhang XE Analyst; 2011 Jan; 136(1):179-83. PubMed ID: 20877886 [TBL] [Abstract][Full Text] [Related]
52. Hydrogen-bonding-induced colorimetric detection of melamine by nonaggregation-based Au-NPs as a probe. Cao Q; Zhao H; He Y; Li X; Zeng L; Ding N; Wang J; Yang J; Wang G Biosens Bioelectron; 2010 Aug; 25(12):2680-5. PubMed ID: 20510598 [TBL] [Abstract][Full Text] [Related]
53. Colorimetric detection of melamine in milk by using gold nanoparticles-based LSPR via optical fibers. Chang K; Wang S; Zhang H; Guo Q; Hu X; Lin Z; Sun H; Jiang M; Hu J PLoS One; 2017; 12(5):e0177131. PubMed ID: 28475597 [TBL] [Abstract][Full Text] [Related]
54. Colorimetric sensing strategy for mercury(II) and melamine utilizing cysteamine-modified gold nanoparticles. Ma Y; Jiang L; Mei Y; Song R; Tian D; Huang H Analyst; 2013 Sep; 138(18):5338-43. PubMed ID: 23875182 [TBL] [Abstract][Full Text] [Related]
55. Colorimetric detection of melamine in milk based on Triton X-100 modified gold nanoparticles and its paper-based application. Gao N; Huang P; Wu F Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():174-180. PubMed ID: 29136582 [TBL] [Abstract][Full Text] [Related]
56. Melamine detection in liquid milk based on selective porous polymer monolith mediated with gold nanospheres by using surface enhanced Raman scattering. Kaleem A; Azmat M; Sharma A; Shen G; Ding X Food Chem; 2019 Mar; 277():624-631. PubMed ID: 30502195 [TBL] [Abstract][Full Text] [Related]
57. Surface-enhanced Raman detection of melamine on silver-nanoparticle-decorated silver/carbon nanospheres: effect of metal ions. Chen LM; Liu YN ACS Appl Mater Interfaces; 2011 Aug; 3(8):3091-6. PubMed ID: 21744828 [TBL] [Abstract][Full Text] [Related]
58. Micron-sized surface enhanced Raman scattering reporter/fluorescence probe encoded colloidal microspheres for sensitive DNA detection. You L; Li R; Dong X; Wang F; Guo J; Wang C J Colloid Interface Sci; 2017 Feb; 488():109-117. PubMed ID: 27821331 [TBL] [Abstract][Full Text] [Related]
59. Utilizing Ag-Au core-satellite structures for colorimetric and surface-enhanced Raman scattering dual-sensing of Cu (II). Guo Y; Li D; Zheng S; Xu N; Deng W Biosens Bioelectron; 2020 Jul; 159():112192. PubMed ID: 32291247 [TBL] [Abstract][Full Text] [Related]
60. Detection of trace melamine in raw materials used for protein pharmaceutical manufacturing using surface-enhanced Raman spectroscopy (SERS) with gold nanoparticles. Wen ZQ; Li G; Ren D Appl Spectrosc; 2011 May; 65(5):514-21. PubMed ID: 21513594 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]