These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Ultralow-Fouling Behavior of Biorecognition Coatings Based on Carboxy-Functional Brushes of Zwitterionic Homo- and Copolymers in Blood Plasma: Functionalization Matters. Lísalová H; Brynda E; Houska M; Víšová I; Mrkvová K; Song XC; Gedeonová E; Surman F; Riedel T; Pop-Georgievski O; Homola J Anal Chem; 2017 Mar; 89(6):3524-3531. PubMed ID: 28233990 [TBL] [Abstract][Full Text] [Related]
4. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ. Leng C; Sun S; Zhang K; Jiang S; Chen Z Acta Biomater; 2016 Aug; 40():6-15. PubMed ID: 26923530 [TBL] [Abstract][Full Text] [Related]
5. Brush-Like Interface on Surface-Attached Hydrogels Repels Proteins and Bacteria. Witzdam L; Meurer YL; Garay-Sarmiento M; Vorobii M; Söder D; Quandt J; Haraszti T; Rodriguez-Emmenegger C Macromol Biosci; 2022 May; 22(5):e2200025. PubMed ID: 35170202 [TBL] [Abstract][Full Text] [Related]
6. Surface Preconditioning Influences the Antifouling Capabilities of Zwitterionic and Nonionic Polymer Brushes. Víšová I; Vrabcová M; Forinová M; Zhigunová Y; Mironov V; Houska M; Bittrich E; Eichhorn KJ; Hashim H; Schovánek P; Dejneka A; Vaisocherová-Lísalová H Langmuir; 2020 Jul; 36(29):8485-8493. PubMed ID: 32506911 [TBL] [Abstract][Full Text] [Related]
7. Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum. Yang W; Zhang L; Wang S; White AD; Jiang S Biomaterials; 2009 Oct; 30(29):5617-21. PubMed ID: 19595457 [TBL] [Abstract][Full Text] [Related]
8. Low temperature aqueous living/controlled (RAFT) polymerization of carboxybetaine methacrylamide up to high molecular weights. Rodriguez-Emmenegger C; Schmidt BV; Sedlakova Z; Šubr V; Alles AB; Brynda E; Barner-Kowollik C Macromol Rapid Commun; 2011 Jul; 32(13):958-65. PubMed ID: 21648007 [TBL] [Abstract][Full Text] [Related]
9. Polymer brushes showing non-fouling in blood plasma challenge the currently accepted design of protein resistant surfaces. Rodriguez-Emmenegger C; Brynda E; Riedel T; Houska M; Šubr V; Alles AB; Hasan E; Gautrot JE; Huck WT Macromol Rapid Commun; 2011 Jul; 32(13):952-7. PubMed ID: 21644241 [TBL] [Abstract][Full Text] [Related]
10. Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties. Chen H; Yang J; Xiao S; Hu R; Bhaway SM; Vogt BD; Zhang M; Chen Q; Ma J; Chang Y; Li L; Zheng J Acta Biomater; 2016 Aug; 40():62-69. PubMed ID: 26965396 [TBL] [Abstract][Full Text] [Related]
11. Ultra-low fouling and high antibody loading zwitterionic hydrogel coatings for sensing and detection in complex media. Chou YN; Sun F; Hung HC; Jain P; Sinclair A; Zhang P; Bai T; Chang Y; Wen TC; Yu Q; Jiang S Acta Biomater; 2016 Aug; 40():31-37. PubMed ID: 27090589 [TBL] [Abstract][Full Text] [Related]
12. Functionalized ultra-low fouling carboxy- and hydroxy-functional surface platforms: functionalization capacity, biorecognition capability and resistance to fouling from undiluted biological media. Vaisocherová H; Ševců V; Adam P; Špačková B; Hegnerová K; de los Santos Pereira A; Rodriguez-Emmenegger C; Riedel T; Houska M; Brynda E; Homola J Biosens Bioelectron; 2014 Jan; 51():150-7. PubMed ID: 23954672 [TBL] [Abstract][Full Text] [Related]
13. Surface-fragmenting hyperbranched copolymers with hydrolysis-generating zwitterions for antifouling coatings. Mei L; Ai X; Ma C; Zhang G J Mater Chem B; 2020 Jul; 8(25):5434-5440. PubMed ID: 32530450 [TBL] [Abstract][Full Text] [Related]
14. Applying thermosettable zwitterionic copolymers as general fouling-resistant and thermal-tolerant biomaterial interfaces. Chou YN; Chang Y; Wen TC ACS Appl Mater Interfaces; 2015 May; 7(19):10096-107. PubMed ID: 25912841 [TBL] [Abstract][Full Text] [Related]
15. Dry film refractive index as an important parameter for ultra-low fouling surface coatings. Brault ND; Sundaram HS; Li Y; Huang CJ; Yu Q; Jiang S Biomacromolecules; 2012 Mar; 13(3):589-93. PubMed ID: 22352876 [TBL] [Abstract][Full Text] [Related]
16. Functionalizable Antifouling Coatings as Tunable Platforms for the Stress-Driven Manipulation of Living Cell Machinery. Víšová I; Smolková B; Uzhytchak M; Vrabcová M; Chafai DE; Houska M; Pastucha M; Skládal P; Farka Z; Dejneka A; Vaisocherová-Lísalová H Biomolecules; 2020 Aug; 10(8):. PubMed ID: 32764330 [TBL] [Abstract][Full Text] [Related]
17. Systematic Comparison of Zwitterionic and Non-Zwitterionic Antifouling Polymer Brushes on a Bead-Based Platform. van Andel E; Lange SC; Pujari SP; Tijhaar EJ; Smulders MMJ; Savelkoul HFJ; Zuilhof H Langmuir; 2019 Feb; 35(5):1181-1191. PubMed ID: 30265555 [TBL] [Abstract][Full Text] [Related]
18. Polymer brushes interfacing blood as a route toward high performance blood contacting devices. Surman F; Riedel T; Bruns M; Kostina NY; Sedláková Z; Rodriguez-Emmenegger C Macromol Biosci; 2015 May; 15(5):636-46. PubMed ID: 25644402 [TBL] [Abstract][Full Text] [Related]
19. Ultra-low fouling and functionalizable zwitterionic coatings grafted onto SiO2 via a biomimetic adhesive group for sensing and detection in complex media. Brault ND; Gao C; Xue H; Piliarik M; Homola J; Jiang S; Yu Q Biosens Bioelectron; 2010 Jun; 25(10):2276-82. PubMed ID: 20359880 [TBL] [Abstract][Full Text] [Related]