These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 32045111)

  • 1. An expanded CRISPRi toolbox for tunable control of gene expression in Pseudomonas putida.
    Batianis C; Kozaeva E; Damalas SG; Martín-Pascual M; Volke DC; Nikel PI; Martins Dos Santos VAP
    Microb Biotechnol; 2020 Mar; 13(2):368-385. PubMed ID: 32045111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Robust CRISPR Interference Gene Repression System in Pseudomonas.
    Tan SZ; Reisch CR; Prather KLJ
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29311279
    [No Abstract]   [Full Text] [Related]  

  • 3. CRISPR interference-mediated gene regulation in Pseudomonas putida KT2440.
    Kim SK; Yoon PK; Kim SJ; Woo SG; Rha E; Lee H; Yeom SJ; Kim H; Lee DH; Lee SG
    Microb Biotechnol; 2020 Jan; 13(1):210-221. PubMed ID: 30793496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain.
    Park J; Shin H; Lee SM; Um Y; Woo HM
    Microb Cell Fact; 2018 Jan; 17(1):4. PubMed ID: 29316926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Xylose-Inducible Expression System and a CRISPR Interference Plasmid for Targeted Knockdown of Gene Expression in Clostridioides difficile.
    Müh U; Pannullo AG; Weiss DS; Ellermeier CD
    J Bacteriol; 2019 Jul; 201(14):. PubMed ID: 30745377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-guided dynamic control of essential metabolic nodes boosts acetyl-coenzyme A-dependent bioproduction in rewired Pseudomonas putida.
    Kozaeva E; Volkova S; Matos MRA; Mezzina MP; Wulff T; Volke DC; Nielsen LK; Nikel PI
    Metab Eng; 2021 Sep; 67():373-386. PubMed ID: 34343699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPRi-mediated tunable control of gene expression level with engineered single-guide RNA in Escherichia coli.
    Byun G; Yang J; Seo SW
    Nucleic Acids Res; 2023 May; 51(9):4650-4659. PubMed ID: 36999618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
    Zhang YM; Zheng L; Xie K
    mSphere; 2023 Feb; 8(1):e0059422. PubMed ID: 36655998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating Pseudomonas aeruginosa Gene Function During Pathogenesis Using Mobile-CRISPRi.
    Yu MA; Banta AB; Ward RD; Prasad NK; Kwon MS; Rosenberg OS; Peters JM
    Methods Mol Biol; 2024; 2721():13-32. PubMed ID: 37819512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated genome engineering of Pseudomonas putida by I-SceI-mediated recombination and CRISPR-Cas9 counterselection.
    Wirth NT; Kozaeva E; Nikel PI
    Microb Biotechnol; 2020 Jan; 13(1):233-249. PubMed ID: 30861315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Broad-Host-Range CRISPRi Toolkit for Silencing Gene Expression in
    Hogan AM; Rahman ASMZ; Lightly TJ; Cardona ST
    ACS Synth Biol; 2019 Oct; 8(10):2372-2384. PubMed ID: 31491085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of dual-inducible duet-expression vectors for tunable gene expression control and CRISPR interference-based gene repression in Pseudomonas putida KT2440.
    Gauttam R; Mukhopadhyay A; Simmons BA; Singer SW
    Microb Biotechnol; 2021 Nov; 14(6):2659-2678. PubMed ID: 34009716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable translation-level CRISPR interference by dCas13 and engineered gRNA in bacteria.
    Kim G; Kim HJ; Kim K; Kim HJ; Yang J; Seo SW
    Nat Commun; 2024 Jun; 15(1):5319. PubMed ID: 38909033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).
    Hawkins JS; Wong S; Peters JM; Almeida R; Qi LS
    Methods Mol Biol; 2015; 1311():349-62. PubMed ID: 25981485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of single guide RNA transcription for efficient CRISPR/Cas-based genomic engineering.
    Ui-Tei K; Maruyama S; Nakano Y
    Genome; 2017 Jun; 60(6):537-545. PubMed ID: 28177825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR interference (CRISPRi) as transcriptional repression tool for Hungateiclostridium thermocellum DSM 1313.
    Ganguly J; Martin-Pascual M; van Kranenburg R
    Microb Biotechnol; 2020 Mar; 13(2):339-349. PubMed ID: 31802632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors.
    Replogle JM; Bonnar JL; Pogson AN; Liem CR; Maier NK; Ding Y; Russell BJ; Wang X; Leng K; Guna A; Norman TM; Pak RA; Ramos DM; Ward ME; Gilbert LA; Kampmann M; Weissman JS; Jost M
    Elife; 2022 Dec; 11():. PubMed ID: 36576240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system.
    Sun J; Wang Q; Jiang Y; Wen Z; Yang L; Wu J; Yang S
    Microb Cell Fact; 2018 Mar; 17(1):41. PubMed ID: 29534717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of CRISPR technology and its application in bone and cartilage tissue engineering].
    Chen G; Cheng D; Chen B
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 Dec; 39(12):1515-1520. PubMed ID: 31907146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.