These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 32045213)
1. Identification and Characterization of a Redox Sensor Phosphodiesterase from Kitanishi K; Igarashi J; Matsuoka A; Unno M Biochemistry; 2020 Mar; 59(8):983-991. PubMed ID: 32045213 [TBL] [Abstract][Full Text] [Related]
2. Gas-Selective Catalytic Regulation by a Newly Identified Globin-Coupled Sensor Phosphodiesterase Containing an HD-GYP Domain from the Human Pathogen Kitanishi K; Aoyama N; Shimonaka M Biochemistry; 2024 Feb; 63(4):523-532. PubMed ID: 38264987 [TBL] [Abstract][Full Text] [Related]
3. An HD-GYP cyclic di-guanosine monophosphate phosphodiesterase with a non-heme diiron-carboxylate active site. Miner KD; Klose KE; Kurtz DM Biochemistry; 2013 Aug; 52(32):5329-31. PubMed ID: 23883166 [TBL] [Abstract][Full Text] [Related]
4. Sequence Conservation, Domain Architectures, and Phylogenetic Distribution of the HD-GYP Type c-di-GMP Phosphodiesterases. Galperin MY; Chou SH J Bacteriol; 2022 Apr; 204(4):e0056121. PubMed ID: 34928179 [TBL] [Abstract][Full Text] [Related]
5. A bacterial hemerythrin domain regulates the activity of a Vibrio cholerae diguanylate cyclase. Schaller RA; Ali SK; Klose KE; Kurtz DM Biochemistry; 2012 Oct; 51(43):8563-70. PubMed ID: 23057727 [TBL] [Abstract][Full Text] [Related]
6. HD-[HD-GYP] Phosphodiesterases: Activities and Evolutionary Diversification within the HD-GYP Family. Sun S; Pandelia ME Biochemistry; 2020 Jun; 59(25):2340-2350. PubMed ID: 32496757 [TBL] [Abstract][Full Text] [Related]
7. Phosphodiesterase EdpX1 Promotes Xanthomonas oryzae pv. oryzae Virulence, Exopolysaccharide Production, and Biofilm Formation. Xue D; Tian F; Yang F; Chen H; Yuan X; Yang CH; Chen Y; Wang Q; He C Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217836 [TBL] [Abstract][Full Text] [Related]
8. The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases. Lovering AL; Capeness MJ; Lambert C; Hobley L; Sockett RE mBio; 2011; 2(5):. PubMed ID: 21990613 [TBL] [Abstract][Full Text] [Related]
9. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP. Miner KD; Kurtz DM Biochemistry; 2016 Feb; 55(6):970-9. PubMed ID: 26786892 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre. Bellini D; Caly DL; McCarthy Y; Bumann M; An SQ; Dow JM; Ryan RP; Walsh MA Mol Microbiol; 2014 Jan; 91(1):26-38. PubMed ID: 24176013 [TBL] [Abstract][Full Text] [Related]
11. Finally! The structural secrets of a HD-GYP phosphodiesterase revealed. Wigren E; Liang ZX; Römling U Mol Microbiol; 2014 Jan; 91(1):1-5. PubMed ID: 24236493 [TBL] [Abstract][Full Text] [Related]
12. A pGpG-specific phosphodiesterase regulates cyclic di-GMP signaling in Vibrio cholerae. Heo K; Lee JW; Jang Y; Kwon S; Lee J; Seok C; Ha NC; Seok YJ J Biol Chem; 2022 Mar; 298(3):101626. PubMed ID: 35074425 [TBL] [Abstract][Full Text] [Related]
14. C-di-GMP hydrolysis by Pseudomonas aeruginosa HD-GYP phosphodiesterases: analysis of the reaction mechanism and novel roles for pGpG. Stelitano V; Giardina G; Paiardini A; Castiglione N; Cutruzzolà F; Rinaldo S PLoS One; 2013; 8(9):e74920. PubMed ID: 24066157 [TBL] [Abstract][Full Text] [Related]
15. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Orr MW; Donaldson GP; Severin GB; Wang J; Sintim HO; Waters CM; Lee VT Proc Natl Acad Sci U S A; 2015 Sep; 112(36):E5048-57. PubMed ID: 26305945 [TBL] [Abstract][Full Text] [Related]
16. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Ryan RP; Fouhy Y; Lucey JF; Crossman LC; Spiro S; He YW; Zhang LH; Heeb S; Cámara M; Williams P; Dow JM Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6712-7. PubMed ID: 16611728 [TBL] [Abstract][Full Text] [Related]
17. Structural basis of functional diversification of the HD-GYP domain revealed by the Pseudomonas aeruginosa PA4781 protein, which displays an unselective bimetallic binding site. Rinaldo S; Paiardini A; Stelitano V; Brunotti P; Cervoni L; Fernicola S; Protano C; Vitali M; Cutruzzolà F; Giardina G J Bacteriol; 2015 Apr; 197(8):1525-35. PubMed ID: 25691523 [TBL] [Abstract][Full Text] [Related]
18. Identification of c-di-GMP derivatives resistant to an EAL domain phosphodiesterase. Shanahan CA; Gaffney BL; Jones RA; Strobel SA Biochemistry; 2013 Jan; 52(2):365-77. PubMed ID: 23256840 [TBL] [Abstract][Full Text] [Related]
19. The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. Schmidt AJ; Ryjenkov DA; Gomelsky M J Bacteriol; 2005 Jul; 187(14):4774-81. PubMed ID: 15995192 [TBL] [Abstract][Full Text] [Related]
20. Bacterial hemerythrin domain-containing oxygen and redox sensors: Versatile roles for oxygen and redox signaling. Kitanishi K Front Mol Biosci; 2022; 9():967059. PubMed ID: 35992274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]