These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
426 related articles for article (PubMed ID: 32045572)
1. An EEG-fNIRS hybridization technique in the four-class classification of alzheimer's disease. Cicalese PA; Li R; Ahmadi MB; Wang C; Francis JT; Selvaraj S; Schulz PE; Zhang Y J Neurosci Methods; 2020 Apr; 336():108618. PubMed ID: 32045572 [TBL] [Abstract][Full Text] [Related]
2. Diagnosis of Mild Cognitive Impairment Using Cognitive Tasks: A Functional Near-Infrared Spectroscopy Study. Yoo SH; Woo SW; Shin MJ; Yoon JA; Shin YI; Hong KS Curr Alzheimer Res; 2020; 17(13):1145-1160. PubMed ID: 33583382 [TBL] [Abstract][Full Text] [Related]
3. Enhancing Performance of a Hybrid EEG-fNIRS System Using Channel Selection and Early Temporal Features. Li R; Potter T; Huang W; Zhang Y Front Hum Neurosci; 2017; 11():462. PubMed ID: 28966581 [TBL] [Abstract][Full Text] [Related]
4. Dynamic cortical connectivity alterations associated with Alzheimer's disease: An EEG and fNIRS integration study. Li R; Nguyen T; Potter T; Zhang Y Neuroimage Clin; 2019; 21():101622. PubMed ID: 30527906 [TBL] [Abstract][Full Text] [Related]
5. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching. Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118 [TBL] [Abstract][Full Text] [Related]
6. Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications. Ali MU; Zafar A; Kallu KD; Masood H; Mannan MMN; Ibrahim MM; Kim S; Khan MA IEEE J Biomed Health Inform; 2024 Jun; 28(6):3361-3370. PubMed ID: 37436864 [TBL] [Abstract][Full Text] [Related]
7. An improved I-FAST system for the diagnosis of Alzheimer's disease from unprocessed electroencephalograms by using robust invariant features. Buscema M; Vernieri F; Massini G; Scrascia F; Breda M; Rossini PM; Grossi E Artif Intell Med; 2015 May; 64(1):59-74. PubMed ID: 25997573 [TBL] [Abstract][Full Text] [Related]
8. Measuring Mental Workload with EEG+fNIRS. Aghajani H; Garbey M; Omurtag A Front Hum Neurosci; 2017; 11():359. PubMed ID: 28769775 [TBL] [Abstract][Full Text] [Related]
9. A Computationally Efficient Method for Hybrid EEG-fNIRS BCI Based on the Pearson Correlation. Hasan MAH; Khan MU; Mishra D Biomed Res Int; 2020; 2020():1838140. PubMed ID: 32923476 [TBL] [Abstract][Full Text] [Related]
10. Crossing time windows optimization based on mutual information for hybrid BCI. Meng M; Dai L; She Q; Ma Y; Kong W Math Biosci Eng; 2021 Sep; 18(6):7919-7935. PubMed ID: 34814281 [TBL] [Abstract][Full Text] [Related]
11. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification. Chiarelli AM; Croce P; Merla A; Zappasodi F J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352 [TBL] [Abstract][Full Text] [Related]
12. Merging fNIRS-EEG Brain Monitoring and Body Motion Capture to Distinguish Parkinsons Disease. Abtahi M; Bahram Borgheai S; Jafari R; Constant N; Diouf R; Shahriari Y; Mankodiya K IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1246-1253. PubMed ID: 32305929 [TBL] [Abstract][Full Text] [Related]
13. Electroencephalography-based classification of Alzheimer's disease spectrum during computer-based cognitive testing. Kim SK; Kim H; Kim SH; Kim JB; Kim L Sci Rep; 2024 Mar; 14(1):5252. PubMed ID: 38438453 [TBL] [Abstract][Full Text] [Related]
14. A hybrid feature selection approach for the early diagnosis of Alzheimer's disease. Gallego-Jutglà E; Solé-Casals J; Vialatte FB; Elgendi M; Cichocki A; Dauwels J J Neural Eng; 2015 Feb; 12(1):016018. PubMed ID: 25605667 [TBL] [Abstract][Full Text] [Related]
15. Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces. Hong KS; Khan MJ; Hong MJ Front Hum Neurosci; 2018; 12():246. PubMed ID: 30002623 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Assessment of Resting-State for Mild Cognitive Impairment Detection: A Functional Near-Infrared Spectroscopy and Deep Learning Approach. Yang D; Hong KS J Alzheimers Dis; 2021; 80(2):647-663. PubMed ID: 33579839 [TBL] [Abstract][Full Text] [Related]
17. A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia. Ieracitano C; Mammone N; Hussain A; Morabito FC Neural Netw; 2020 Mar; 123():176-190. PubMed ID: 31884180 [TBL] [Abstract][Full Text] [Related]
18. Evidence of Neurovascular Un-Coupling in Mild Alzheimer's Disease through Multimodal EEG-fNIRS and Multivariate Analysis of Resting-State Data. Chiarelli AM; Perpetuini D; Croce P; Filippini C; Cardone D; Rotunno L; Anzoletti N; Zito M; Zappasodi F; Merla A Biomedicines; 2021 Mar; 9(4):. PubMed ID: 33810484 [TBL] [Abstract][Full Text] [Related]
19. Toward a compact hybrid brain-computer interface (BCI): Performance evaluation of multi-class hybrid EEG-fNIRS BCIs with limited number of channels. Kwon J; Shin J; Im CH PLoS One; 2020; 15(3):e0230491. PubMed ID: 32187208 [TBL] [Abstract][Full Text] [Related]
20. Subject-Specific feature selection for near infrared spectroscopy based brain-computer interfaces. Aydin EA Comput Methods Programs Biomed; 2020 Oct; 195():105535. PubMed ID: 32534382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]