BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32045671)

  • 1. Investigating the gene expression profiles of cells in seven embryonic stages with machine learning algorithms.
    Chen L; Pan X; Guo W; Gan Z; Zhang YH; Niu Z; Huang T; Cai YD
    Genomics; 2020 May; 112(3):2524-2534. PubMed ID: 32045671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Expression Pattern of snoRNAs in Different Cancer Types with Machine Learning Algorithms.
    Pan X; Chen L; Feng KY; Hu XH; Zhang YH; Kong XY; Huang T; Cai YD
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31052553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of leukemia stem cell expression signatures through Monte Carlo feature selection strategy and support vector machine.
    Li J; Lu L; Zhang YH; Xu Y; Liu M; Feng K; Chen L; Kong X; Huang T; Cai YD
    Cancer Gene Ther; 2020 Feb; 27(1-2):56-69. PubMed ID: 31138902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of gene expression profiles of lung cancer subtypes with machine learning algorithms.
    Yuan F; Lu L; Zou Q
    Biochim Biophys Acta Mol Basis Dis; 2020 Aug; 1866(8):165822. PubMed ID: 32360590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HelPredictor models single-cell transcriptome to predict human embryo lineage allocation.
    Liang P; Zheng L; Long C; Yang W; Yang L; Zuo Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34037706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data.
    Zhang Y; Deng Q; Liang W; Zou X
    Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data.
    Hu Y; Hase T; Li HP; Prabhakar S; Kitano H; Ng SK; Ghosh S; Wee LJ
    BMC Genomics; 2016 Dec; 17(Suppl 13):1025. PubMed ID: 28155657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinguishing three subtypes of hematopoietic cells based on gene expression profiles using a support vector machine.
    Zhang YH; Hu Y; Zhang Y; Hu LD; Kong X
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2255-2265. PubMed ID: 29241664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of biomarkers that distinguish chemical contaminants based on gene expression profiles.
    Wei X; Ai J; Deng Y; Guan X; Johnson DR; Ang CY; Zhang C; Perkins EJ
    BMC Genomics; 2014 Mar; 15():248. PubMed ID: 24678894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the Gene Expression Rules That Define the Subtypes in Glioma.
    Cai YD; Zhang S; Zhang YH; Pan X; Feng K; Chen L; Huang T; Kong X
    J Clin Med; 2018 Oct; 7(10):. PubMed ID: 30322114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of cortical interneuron cell markers in mouse embryos based on machine learning analysis of single-cell transcriptomics.
    Li Z; Wang D; Guo W; Zhang S; Chen L; Zhang YH; Lu L; Pan X; Huang T; Cai YD
    Front Neurosci; 2022; 16():841145. PubMed ID: 35911980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning models to predict the progression from early to late stages of papillary renal cell carcinoma.
    Singh NP; Bapi RS; Vinod PK
    Comput Biol Med; 2018 Sep; 100():92-99. PubMed ID: 29990647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate genome-wide predictions of spatio-temporal gene expression during embryonic development.
    Zhou J; Schor IE; Yao V; Theesfeld CL; Marco-Ferreres R; Tadych A; Furlong EEM; Troyanskaya OG
    PLoS Genet; 2019 Sep; 15(9):e1008382. PubMed ID: 31553718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary Tumor Site Specificity is Preserved in Patient-Derived Tumor Xenograft Models.
    Chen L; Pan X; Zhang YH; Hu X; Feng K; Huang T; Cai YD
    Front Genet; 2019; 10():738. PubMed ID: 31456818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of structural brain MRI and multi-parameter classification for Alzheimer's disease.
    Zhang Y; Liu S
    Biomed Tech (Berl); 2018 Jul; 63(4):427-437. PubMed ID: 28622141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Type 2 Diabetes Biomarkers From Mixed Single-Cell Sequencing Data With Feature Selection Methods.
    Li Z; Pan X; Cai YD
    Front Bioeng Biotechnol; 2022; 10():890901. PubMed ID: 35721855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CARSVM: a class association rule-based classification framework and its application to gene expression data.
    Kianmehr K; Alhajj R
    Artif Intell Med; 2008 Sep; 44(1):7-25. PubMed ID: 18586476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunosignature Screening for Multiple Cancer Subtypes Based on Expression Rule.
    Chen L; Pan X; Zeng T; Zhang YH; Zhang Y; Huang T; Cai YD
    Front Bioeng Biotechnol; 2019; 7():370. PubMed ID: 31850330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-driven diagnosis of spinal abnormalities using feature selection and machine learning algorithms.
    Raihan-Al-Masud M; Mondal MRH
    PLoS One; 2020; 15(2):e0228422. PubMed ID: 32027680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.
    Chen Z; Li J; Wei L
    Artif Intell Med; 2007 Oct; 41(2):161-75. PubMed ID: 17851055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.