BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32045744)

  • 1. A unified deep network for beamforming and speckle reduction in plane wave imaging: A simulation study.
    Mor E; Bar-Hillel A
    Ultrasonics; 2020 Apr; 103():106069. PubMed ID: 32045744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robust cascaded deep neural network for image reconstruction of single plane wave ultrasound RF data.
    Wasih M; Ahmad S; Almekkawy M
    Ultrasonics; 2023 Jul; 132():106981. PubMed ID: 36913830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction for plane-wave ultrasound imaging using modified U-Net-based beamformer.
    Nguon LS; Seo J; Seo K; Han Y; Park S
    Comput Med Imaging Graph; 2022 Jun; 98():102073. PubMed ID: 35561639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic coherence factor based on the standard deviation for coherent plane-wave compounding.
    Wang Y; Zheng C; Peng H
    Comput Biol Med; 2019 May; 108():249-262. PubMed ID: 31005800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Transmit-Receive Beamforming by Spatial Matched Filtering for Ultrasound Imaging with Plane Wave Transmission.
    Chen Y; Lou Y; Yen J
    Ultrason Imaging; 2017 Jul; 39(4):207-223. PubMed ID: 28627331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive scaling Wiener postfilter using generalized coherence factor for coherent plane-wave compounding.
    Wang Y; Zheng C; Zhao X; Peng H
    Comput Biol Med; 2020 Jan; 116():103564. PubMed ID: 32001009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved contrast for high frame rate imaging using coherent compounding combined with spatial matched filtering.
    Lou Y; Yen JT
    Ultrasonics; 2017 Jul; 78():152-161. PubMed ID: 28351747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards Fast Region Adaptive Ultrasound Beamformer for Plane Wave Imaging Using Convolutional Neural Networks.
    Mathews RP; Raveendranatha Panicker M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2910-2913. PubMed ID: 34891854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement in Multi-Angle Plane Wave Image Quality Using Minimum Variance Beamforming with Adaptive Signal Coherence.
    Shen CC; Huang CL
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-based beamforming with plane wave synthesis in medical ultrasound.
    Dei K; Tierney J; Byram B
    J Med Imaging (Bellingham); 2018 Apr; 5(2):027001. PubMed ID: 29721516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beamforming and Speckle Reduction Using Neural Networks.
    Hyun D; Brickson LL; Looby KT; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 May; 66(5):898-910. PubMed ID: 30869612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ARU-GAN: U-shaped GAN based on Attention and Residual connection for super-resolution reconstruction.
    Lyu Y; Jiang X; Xu Y; Hou J; Zhao X; Zhu X
    Comput Biol Med; 2023 Sep; 164():107316. PubMed ID: 37595521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Self-adaptive beamforming method based on plane wave ultrasound imaging].
    Zhang L; Zhou H; Zheng Y; Gong X; Wang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):843-8, 853. PubMed ID: 24059068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Multifocus Beamforming for Contrast-Enhanced-Super-Resolution Ultrasound Imaging in Deep Tissue.
    Espindola D; Lin F; Soulioti DE; Dayton PA; Pinton GF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2255-2263. PubMed ID: 30136938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep reconstruction of high-quality ultrasound images from raw plane-wave data: A simulation and in vivo study.
    Goudarzi S; Rivaz H
    Ultrasonics; 2022 Sep; 125():106778. PubMed ID: 35728310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of element directivity on adaptive beamforming applied to high-frame-rate ultrasound.
    Hasegawa H; Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):511-23. PubMed ID: 25768817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network.
    Zhang J; He Q; Xiao Y; Zheng H; Wang C; Luo J
    Med Image Anal; 2021 May; 70():102018. PubMed ID: 33711740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thomson's multitaper approach combined with coherent plane-wave compounding to reduce speckle in ultrasound imaging.
    Toulemonde M; Basset O; Tortoli P; Cachard C
    Ultrasonics; 2015 Feb; 56():390-8. PubMed ID: 25262843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eigenspace generalized sidelobe canceller combined with SNR dependent coherence factor for plane wave imaging.
    Zimbico AJ; Granado DW; Schneider FK; Maia JM; Assef AA; Schiefler N; Costa ET
    Biomed Eng Online; 2018 Aug; 17(1):109. PubMed ID: 30103746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning for Ultrasound Image Formation: CUBDL Evaluation Framework and Open Datasets.
    Hyun D; Wiacek A; Goudarzi S; Rothlubbers S; Asif A; Eickel K; Eldar YC; Huang J; Mischi M; Rivaz H; Sinden D; van Sloun RJG; Strohm H; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3466-3483. PubMed ID: 34224351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.