These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32045804)

  • 21. Combined UV treatment and ozonation for the removal of by-product precursors in swimming pool water.
    Cheema WA; Kaarsholm KMS; Andersen HR
    Water Res; 2017 Mar; 110():141-149. PubMed ID: 28006704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantification of the electron donating capacity and UV absorbance of dissolved organic matter during ozonation of secondary wastewater effluent by an assay and an automated analyzer.
    Walpen N; Houska J; Salhi E; Sander M; von Gunten U
    Water Res; 2020 Oct; 185():116235. PubMed ID: 32823195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of disinfection by-product formation using ozone-based advanced oxidation processes.
    Chen KC; Wang YH
    Environ Technol; 2012; 33(4-6):487-95. PubMed ID: 22629621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: effects on its optical and antioxidant properties.
    Wenk J; Aeschbacher M; Salhi E; Canonica S; von Gunten U; Sander M
    Environ Sci Technol; 2013 Oct; 47(19):11147-56. PubMed ID: 23978074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficiency of ozonation and O
    Lee W; Choi S; Kim H; Lee W; Lee M; Son H; Lee C; Cho M; Lee Y
    J Hazard Mater; 2023 Jul; 454():131436. PubMed ID: 37146328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2.
    Katsoyiannis IA; Canonica S; von Gunten U
    Water Res; 2011 Jul; 45(13):3811-22. PubMed ID: 21645916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transformation of dissolved organic matter during ozonation: effects on trihalomethane formation potential.
    Galapate RP; Baes AU; Okada M
    Water Res; 2001 Jun; 35(9):2201-6. PubMed ID: 11358299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidant-reactive carbonous moieties in dissolved organic matter: Selective quantification by oxidative titration using chlorine dioxide and ozone.
    Houska J; Salhi E; Walpen N; von Gunten U
    Water Res; 2021 Dec; 207():117790. PubMed ID: 34740166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The beneficial effect of cathodic hydrogen peroxide generation on mitigating chlorinated by-product formation during water treatment by an electro-peroxone process.
    Yao W; Fu J; Yang H; Yu G; Wang Y
    Water Res; 2019 Jun; 157():209-217. PubMed ID: 30954696
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting reactivity of model DOM compounds towards chlorine with mediated electrochemical oxidation.
    de Vera GA; Gernjak W; Radjenovic J
    Water Res; 2017 May; 114():113-121. PubMed ID: 28229949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process.
    Yao W; Qu Q; von Gunten U; Chen C; Yu G; Wang Y
    Water Res; 2017 Jan; 108():373-382. PubMed ID: 27839831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H
    Srithep S; Phattarapattamawong S
    Chemosphere; 2017 Jun; 176():25-31. PubMed ID: 28254711
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two analytical approaches quantifying the electron donating capacities of dissolved organic matter to monitor its oxidation during chlorination and ozonation.
    Önnby L; Walpen N; Salhi E; Sander M; von Gunten U
    Water Res; 2018 Nov; 144():677-689. PubMed ID: 30096693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2.
    Rosenfeldt EJ; Linden KG; Canonica S; von Gunten U
    Water Res; 2006 Dec; 40(20):3695-704. PubMed ID: 17078993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the concentration and contribution of superoxide radical for micropollutant abatement during ozonation.
    Guo Y; Zhan J; Yu G; Wang Y
    Water Res; 2021 Apr; 194():116927. PubMed ID: 33618107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of DOM source and character on the degradation of primidone by UV/chlorine: Reaction kinetics and disinfection by-product formation.
    Wang Y; Couet M; Gutierrez L; Allard S; Croué JP
    Water Res; 2020 Apr; 172():115463. PubMed ID: 31962269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Concentration-dependent chloride effect on radical distribution and micropollutant degradation in the sulfate radical-based AOPs.
    Sun B; Zheng Y; Shang C; Yin R
    J Hazard Mater; 2022 May; 430():128450. PubMed ID: 35168101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of a commercial textile biocide with advanced oxidation processes and ozone.
    Arslan-Alaton I
    J Environ Manage; 2007 Jan; 82(2):145-54. PubMed ID: 16624477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effects of organic pollutants in drinking water on the removal of dimethyl phthalate by advanced oxidation processes].
    Rui M; Gao NY; Xu B; Li FS; Zhao JF; Le LS
    Huan Jing Ke Xue; 2006 Dec; 27(12):2495-501. PubMed ID: 17304847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparison of dissolved organic matter transformation in low pressure ultraviolet (LPUV) and ultraviolet light-emitting diode (UV-LED)/chlorine processes.
    Gao ZC; Lin YL; Xu B; Xia Y; Hu CY; Zhang TY; Cao TC; Pan Y; Gao NY
    Sci Total Environ; 2020 Feb; 702():134942. PubMed ID: 31710848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.