BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32046011)

  • 1. Impact of Engineered Carbon Nanodiamonds on the Collapse Mechanism of Model Lung Surfactant Monolayers at the Air-Water Interface.
    Chakraborty A; Hertel A; Ditmars H; Dhar P
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32046011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipid composition modulates carbon nanodiamond-induced alterations in phospholipid domain formation.
    Chakraborty A; Mucci NJ; Tan ML; Steckley A; Zhang T; Forrest ML; Dhar P
    Langmuir; 2015 May; 31(18):5093-104. PubMed ID: 25876023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulmonary surfactant protein C containing lipid films at the air-water interface as a model for the surface of lung alveoli.
    Post A; Nahmen AV; Schmitt M; Ruths J; Riegler H; Sieber M; Galla HJ
    Mol Membr Biol; 1995; 12(1):93-9. PubMed ID: 7767391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pulmonary surfactant proteins SP-B and SP-C and calcium ions on the surface properties of hydrophobic fractions of lung surfactant.
    Christova Y; Enchev E; Lalchev Z
    Eur Biophys J; 1999; 28(1):59-66. PubMed ID: 9933924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collapse in binary phospholipid monolayers at the air/water interface.
    Hibino M; Oshima T
    J Nanosci Nanotechnol; 2012 Jan; 12(1):847-52. PubMed ID: 22524068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hysteresis behavior of amphiphilic model peptide in lung lipid monolayers at the air-water interface by an IRRAS measurement.
    Nakahara H; Dudek A; Nakamura Y; Lee S; Chang CH; Shibata O
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):61-7. PubMed ID: 18977123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the Impact of Hydrophobic Silicon Dioxide in the Interfacial Properties of Lung Surfactant Films.
    Guzmán E; Santini E; Ferrari M; Liggieri L; Ravera F
    Environ Sci Technol; 2022 Jun; 56(11):7308-7318. PubMed ID: 35078318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Langmuir monolayer of artificial pulmonary surfactant mixtures with an amphiphilic peptide at the air/water interface: comparison of new preparations with surfacten (Surfactant TA).
    Nakahara H; Lee S; Sugihara G; Chang CH; Shibata O
    Langmuir; 2008 Apr; 24(7):3370-9. PubMed ID: 18315015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of pulmonary surfactant protein SP-A to monolayers of phospholipids containing hydrophobic surfactant protein SP-B or SP-C: potential differential role for tertiary interaction of lipids, hydrophobic proteins, and SP-A.
    Taneva SG; Keough KM
    Biochemistry; 2000 May; 39(20):6083-93. PubMed ID: 10821681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined effect of synthetic protein, Mini-B, and cholesterol on a model lung surfactant mixture at the air-water interface.
    Chakraborty A; Hui E; Waring AJ; Dhar P
    Biochim Biophys Acta; 2016 Apr; 1858(4):904-12. PubMed ID: 26775740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C₆₀ fullerene promotes lung monolayer collapse.
    Barnoud J; Urbini L; Monticelli L
    J R Soc Interface; 2015 Mar; 12(104):20140931. PubMed ID: 25589571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: II. Monolayers of pulmonary surfactant protein SP-C and phospholipids.
    Taneva S; Keough KM
    Biophys J; 1994 Apr; 66(4):1149-57. PubMed ID: 8038386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of pulmonary surfactant protein D to phospholipid monolayers at the air-water interface.
    Taneva S; Voelker DR; Keough KM
    Biochemistry; 1997 Jul; 36(26):8173-9. PubMed ID: 9201966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of lung surfactant lipid monolayers.
    Rose D; Rendell J; Lee D; Nag K; Booth V
    Biophys Chem; 2008 Dec; 138(3):67-77. PubMed ID: 18845376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: I. Monolayers of pulmonary surfactant protein SP-B and phospholipids.
    Taneva S; Keough KM
    Biophys J; 1994 Apr; 66(4):1137-48. PubMed ID: 8038385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of lung surfactant proteins with anionic phospholipids.
    Takamoto DY; Lipp MM; von Nahmen A; Lee KY; Waring AJ; Zasadzinski JA
    Biophys J; 2001 Jul; 81(1):153-69. PubMed ID: 11423403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase transitions in films of lung surfactant at the air-water interface.
    Nag K; Perez-Gil J; Ruano ML; Worthman LA; Stewart J; Casals C; Keough KM
    Biophys J; 1998 Jun; 74(6):2983-95. PubMed ID: 9635752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular insights on the interference of simplified lung surfactant models by gold nanoparticle pollutants.
    Hossain SI; Gandhi NS; Hughes ZE; Gu YT; Saha SC
    Biochim Biophys Acta Biomembr; 2019 Aug; 1861(8):1458-1467. PubMed ID: 31194957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monolayer collapse regulating process of adsorption-desorption of palladium nanoparticles at fatty acid monolayers at the air-water interface.
    Goto TE; Lopez RF; Iost RM; Crespilho FN; Caseli L
    Langmuir; 2011 Mar; 27(6):2667-75. PubMed ID: 21314156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-crystalline collapse of pulmonary surfactant monolayers.
    Schief WR; Antia M; Discher BM; Hall SB; Vogel V
    Biophys J; 2003 Jun; 84(6):3792-806. PubMed ID: 12770885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.