BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 32046053)

  • 21. Wnt5a and ROR1 activate non-canonical Wnt signaling via RhoA in TCF3-PBX1 acute lymphoblastic leukemia and highlight new treatment strategies via Bcl-2 co-targeting.
    Karvonen H; Perttilä R; Niininen W; Hautanen V; Barker H; Murumägi A; Heckman CA; Ungureanu D
    Oncogene; 2019 Apr; 38(17):3288-3300. PubMed ID: 30631148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wnt Signaling: Role in Regulation of Haematopoiesis.
    Undi RB; Gutti U; Sahu I; Sarvothaman S; Pasupuleti SR; Kandi R; Gutti RK
    Indian J Hematol Blood Transfus; 2016 Jun; 32(2):123-34. PubMed ID: 27065573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Forced expression of Wnt antagonists sFRP1 and WIF1 sensitizes chronic myeloid leukemia cells to tyrosine kinase inhibitors.
    Pehlivan M; Caliskan C; Yuce Z; Sercan HO
    Tumour Biol; 2017 May; 39(5):1010428317701654. PubMed ID: 28468589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Research Advance on Classic Wnt Pathway in Chronic Myelogenous Leukemia--Review].
    Cao ZR; Chen XP; Hu J
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2020 Feb; 28(1):350-353. PubMed ID: 32027302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Wnt signaling pathway regulates Nalm-16 b-cell precursor acute lymphoblastic leukemic cell line survival and etoposide resistance.
    Thiago LS; Costa ES; Lopes DV; Otazu IB; Nowill AE; Mendes FA; Portilho DM; Abreu JG; Mermelstein CS; Orfao A; Rossi MI; Borojevic R
    Biomed Pharmacother; 2010 Jan; 64(1):63-72. PubMed ID: 19864107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Baicalein suppresses the proliferation of acute T-lymphoblastic leukemia Jurkat cells by inhibiting the Wnt/β-catenin signaling.
    Liu X; Liu S; Chen J; He L; Meng X; Liu S
    Ann Hematol; 2016 Oct; 95(11):1787-93. PubMed ID: 27506924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting the Versatile Wnt/β-Catenin Pathway in Cancer Biology and Therapeutics: From Concept to Actionable Strategy.
    Dzobo K; Thomford NE; Senthebane DA
    OMICS; 2019 Nov; 23(11):517-538. PubMed ID: 31613700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review).
    Katoh M
    Int J Oncol; 2017 Nov; 51(5):1357-1369. PubMed ID: 29048660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wnt/β-catenin signaling cascade: A promising target for glioma therapy.
    He L; Zhou H; Zeng Z; Yao H; Jiang W; Qu H
    J Cell Physiol; 2019 Mar; 234(3):2217-2228. PubMed ID: 30277583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the Wnt/beta-catenin network in regulating hematopoiesis.
    Wilusz M; Majka M
    Arch Immunol Ther Exp (Warsz); 2008; 56(4):257-66. PubMed ID: 18726147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The potential of targeting Wnt/β-catenin in colon cancer.
    Sebio A; Kahn M; Lenz HJ
    Expert Opin Ther Targets; 2014 Jun; 18(6):611-5. PubMed ID: 24702624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zebrafish Drug Screening Identifies Erlotinib as an Inhibitor of Wnt/β-Catenin Signaling and Self-Renewal in T-cell Acute Lymphoblastic Leukemia.
    Al-Hamaly MA; Cox AH; Haney MG; Zhang W; Arvin EC; Sampathi S; Wimsett M; Liu C; Blackburn JS
    bioRxiv; 2023 Aug; ():. PubMed ID: 37693603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. γ-Catenin-Dependent Signals Maintain BCR-ABL1
    Luong-Gardiol N; Siddiqui I; Pizzitola I; Jeevan-Raj B; Charmoy M; Huang Y; Irmisch A; Curtet S; Angelov GS; Danilo M; Juilland M; Bornhauser B; Thome M; Hantschel O; Chalandon Y; Cazzaniga G; Bourquin JP; Huelsken J; Held W
    Cancer Cell; 2019 Apr; 35(4):649-663.e10. PubMed ID: 30991025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of hematopoiesis by activators and inhibitors of Wnt signaling from the niche.
    Schreck C; Bock F; Grziwok S; Oostendorp RA; Istvánffy R
    Ann N Y Acad Sci; 2014 Mar; 1310():32-43. PubMed ID: 24611828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Screening for Chemical Suppressors of the Wnt/β-catenin Signaling Pathway].
    Nishiya N
    Yakugaku Zasshi; 2017; 137(2):133-136. PubMed ID: 28154320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment.
    Vilchez V; Turcios L; Marti F; Gedaly R
    World J Gastroenterol; 2016 Jan; 22(2):823-32. PubMed ID: 26811628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update.
    Simioni C; Martelli AM; Zauli G; Vitale M; McCubrey JA; Capitani S; Neri LM
    J Cell Physiol; 2018 Oct; 233(10):6440-6454. PubMed ID: 29667769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Small-Molecule Antagonist of the β-Catenin/TCF4 Interaction Blocks the Self-Renewal of Cancer Stem Cells and Suppresses Tumorigenesis.
    Fang L; Zhu Q; Neuenschwander M; Specker E; Wulf-Goldenberg A; Weis WI; von Kries JP; Birchmeier W
    Cancer Res; 2016 Feb; 76(4):891-901. PubMed ID: 26645562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Small molecules from natural products targeting the Wnt/β-catenin pathway as a therapeutic strategy.
    Liu D; Chen L; Zhao H; Vaziri ND; Ma SC; Zhao YY
    Biomed Pharmacother; 2019 Sep; 117():108990. PubMed ID: 31226638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Redox Control in Acute Lymphoblastic Leukemia: From Physiology to Pathology and Therapeutic Opportunities.
    Chen Y; Li J; Zhao Z
    Cells; 2021 May; 10(5):. PubMed ID: 34067520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.