BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 32046074)

  • 1. Inflammatory Targets in Diabetic Nephropathy.
    Donate-Correa J; Luis-Rodríguez D; Martín-Núñez E; Tagua VG; Hernández-Carballo C; Ferri C; Rodríguez-Rodríguez AE; Mora-Fernández C; Navarro-González JF
    J Clin Med; 2020 Feb; 9(2):. PubMed ID: 32046074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inflammatory Cytokines in Diabetic Kidney Disease: Pathophysiologic and Therapeutic Implications.
    Donate-Correa J; Ferri CM; Sánchez-Quintana F; Pérez-Castro A; González-Luis A; Martín-Núñez E; Mora-Fernández C; Navarro-González JF
    Front Med (Lausanne); 2020; 7():628289. PubMed ID: 33553221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNAs as Regulators of Immune and Inflammatory Responses: Potential Therapeutic Targets in Diabetic Nephropathy.
    Zhou H; Ni WJ; Meng XM; Tang LQ
    Front Cell Dev Biol; 2020; 8():618536. PubMed ID: 33569382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Endoplasmic Reticulum Stress in Diabetic Nephropathy.
    Fan Y; Lee K; Wang N; He JC
    Curr Diab Rep; 2017 Mar; 17(3):17. PubMed ID: 28271468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Management of diabetic nephropathy: Recent progress and future perspective.
    Ahmad J
    Diabetes Metab Syndr; 2015; 9(4):343-58. PubMed ID: 25845297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The analysis of risk factors for diabetic nephropathy progression and the construction of a prognostic database for chronic kidney diseases.
    Wang G; Ouyang J; Li S; Wang H; Lian B; Liu Z; Xie L
    J Transl Med; 2019 Aug; 17(1):264. PubMed ID: 31409386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key pathways in renal disease progression of experimental diabetes.
    Zoja C; Zanchi C; Benigni A
    Nephrol Dial Transplant; 2015 Aug; 30 Suppl 4():iv54-9. PubMed ID: 26209738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics in diabetic nephropathy.
    Kim HJ; Yoo HS; Kim CW
    Proteomics Clin Appl; 2008 Mar; 2(3):301-11. PubMed ID: 21136835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of heparanase-driven inflammatory cascade in pathogenesis of diabetic nephropathy.
    Goldberg R; Rubinstein AM; Gil N; Hermano E; Li JP; van der Vlag J; Atzmon R; Meirovitz A; Elkin M
    Diabetes; 2014 Dec; 63(12):4302-13. PubMed ID: 25008182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytokines in diabetic nephropathy.
    Wu CC; Sytwu HK; Lin YF
    Adv Clin Chem; 2012; 56():55-74. PubMed ID: 22397028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting inflammation in diabetic nephropathy: a tale of hope.
    Moreno JA; Gomez-Guerrero C; Mas S; Sanz AB; Lorenzo O; Ruiz-Ortega M; Opazo L; Mezzano S; Egido J
    Expert Opin Investig Drugs; 2018 Nov; 27(11):917-930. PubMed ID: 30334635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update.
    Bhattacharjee N; Barma S; Konwar N; Dewanjee S; Manna P
    Eur J Pharmacol; 2016 Nov; 791():8-24. PubMed ID: 27568833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy.
    Elmarakby AA; Sullivan JC
    Cardiovasc Ther; 2012 Feb; 30(1):49-59. PubMed ID: 20718759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes.
    De Nicola L; Gabbai FB; Liberti ME; Sagliocca A; Conte G; Minutolo R
    Am J Kidney Dis; 2014 Jul; 64(1):16-24. PubMed ID: 24673844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleukin-17A blockade reduces albuminuria and kidney injury in an accelerated model of diabetic nephropathy.
    Lavoz C; Matus YS; Orejudo M; Carpio JD; Droguett A; Egido J; Mezzano S; Ruiz-Ortega M
    Kidney Int; 2019 Jun; 95(6):1418-1432. PubMed ID: 30982673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lessons learned from studies of the natural history of diabetic nephropathy in young type 1 diabetic patients.
    Steinke JM; Mauer M;
    Pediatr Endocrinol Rev; 2008 Aug; 5 Suppl 4():958-63. PubMed ID: 18806710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of non-coding RNAs in diabetic nephropathy: potential applications as biomarkers for disease development and progression.
    Alvarez ML; Distefano JK
    Diabetes Res Clin Pract; 2013 Jan; 99(1):1-11. PubMed ID: 23102915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Inhibitory Effect of Rapamycin on Toll Like Receptor 4 and Interleukin 17 in the Early Stage of Rat Diabetic Nephropathy.
    Yu R; Bo H; Villani V; Spencer PJ; Fu P
    Kidney Blood Press Res; 2016; 41(1):55-69. PubMed ID: 26849067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal iron accelerates the progression of diabetic nephropathy in the HFE gene knockout mouse model of iron overload.
    Chaudhary K; Chilakala A; Ananth S; Mandala A; Veeranan-Karmegam R; Powell FL; Ganapathy V; Gnana-Prakasam JP
    Am J Physiol Renal Physiol; 2019 Aug; 317(2):F512-F517. PubMed ID: 31188032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel insights into the pathophysiology and clinical aspects of diabetic nephropathy.
    Ilyas Z; Chaiban JT; Krikorian A
    Rev Endocr Metab Disord; 2017 Mar; 18(1):21-28. PubMed ID: 28289965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.