These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 32046076)

  • 1. The Effects of Hot-Pack Coating Materials on the Pack Rolling Process and Microstructural Characteristics during Ti-46Al-8Nb Sheet Fabrication.
    Huang H; Liao M; Yu Q; Liu G; Wang Z
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32046076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformation and Phase Transformation of Disordered α Phase in the (α + γ) Two-Phase Region of a High-Nb TiAl Alloy.
    Zhou H; Kong F; Wang Y; Hou X; Cui N; Sun J
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Recrystallization of the Constituent γ Phase and Mechanical Properties of Ti-43Al-9V-0.2Y Alloy Sheet.
    Zhang Y; Wang X; Kong F; Chen Y
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28914797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure Evolution of the Ti-46Al-8Nb-2.5V Alloy during Hot Compression and Subsequent Annealing at 900 °C.
    Cao S; Li Z; Pu J; Han J; Dong Q; Zhu M
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructural Characterization by Automated Crystal Orientation and Phase Mapping by Precession Electron Diffraction in TEM: Application to Hot Deformation of a
    Singh V; Mondal C; Bhattacharjee PP; Ghosal P
    Microsc Microanal; 2019 Dec; 25(6):1457-1465. PubMed ID: 30973126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hot Deformation Behavior and Microstructural Evolution of a Novel β-Solidifying Ti-43Al-3Mn-2Nb-0.1Y Alloy.
    Wu Q; Cui N; Xiao X; Wang X; Zhao E
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31284560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow Stress Prediction and Hot Deformation Mechanisms in Ti-44Al-5Nb-(Mo, V, B) Alloy.
    Li T; Liu G; Xu M; Wang B; Fu T; Wang Z; Misra RDK
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Directional Solidification, Microstructural Characterization and Deformation Behavior of β-Solidifying TiAl Alloy.
    Cui N; Wu Q; Wang J; Lv B; Kong F
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot Deformation Behavior and Pulse Current Auxiliary Isothermal Forging of Hot Pressing Sintering TiAl Based Alloys.
    Shi C; Jiang S; Zhang K
    Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29258198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hot Deformation Behavior of a Ti-40Al-10V Alloy with Quenching-Tempering Microstructure.
    Cheng L; Chen Y; Yang G; Xie L; Wang J; Lu Y; Kou H
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29882871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Study of Microstructure and Mechanical Properties of Two TiAl-Based Alloys Reinforced with Carbide Particles.
    Lapin J; Kamyshnykova K; Klimova A
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32731535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-Dependent Structural Properties of a High-Nb TiAl Alloy Powder.
    Liu B; Wang M; Du Y; Li J
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Microstructural Evolution, Tensile Properties, and Phase Hardness of a TiAl Alloy with a High Content of the β Phase.
    Cui N; Wu Q; Yan Z; Zhou H; Wang X
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31466224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Friction Weldability of a High Nb Containing TiAl Alloy.
    Xu X; Lin J; Guo J; Liang Y
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Multi-Directional Forging on the Microstructure and Mechanical Properties of β-Solidifying TiAl Alloy.
    Cui N; Wu Q; Bi K; Wang J; Xu T; Kong F
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Advanced TiAl Alloy for High-Performance Racing Applications.
    Burtscher M; Klein T; Lindemann J; Lehmann O; Fellmann H; Güther V; Clemens H; Mayer S
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33105858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superplastic Deformation Mechanisms of Superfine/Nanocrystalline Duplex PM-TiAl-Based Alloy.
    Gong X; Duan Z; Pei W; Chen H
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28925971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructural Evolution and Mechanical Properties of an Advanced γ-TiAl Based Alloy Processed by Spark Plasma Sintering.
    Wimler D; Lindemann J; Clemens H; Mayer S
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31075938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning electron microscopy and transmission electron microscopy study of hot-deformed gamma-TiAl-based alloy microstructure.
    Chrapoński J; Rodak K
    J Microsc; 2006 Sep; 223(Pt 3):298-301. PubMed ID: 17059556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hot Deformation Behavior and Microstructural Evolution of PM Ti43Al9V0.3Y with Fine Equiaxed γ and B2 Grain Microstructure.
    Zhang D; Chen Y; Zhang G; Liu N; Kong F; Tian J; Sun J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32079325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.