These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
774 related articles for article (PubMed ID: 32046217)
21. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice. Xu R; Wei P; Yang J Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567 [TBL] [Abstract][Full Text] [Related]
22. CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report. Wang X; Raghavan A; Chen T; Qiao L; Zhang Y; Ding Q; Musunuru K Arterioscler Thromb Vasc Biol; 2016 May; 36(5):783-6. PubMed ID: 26941020 [TBL] [Abstract][Full Text] [Related]
23. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research]. Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746 [TBL] [Abstract][Full Text] [Related]
24. Could CRISPR be the solution for gene editing's Gordian knot? Fang H; Wang W Cell Biol Toxicol; 2016 Dec; 32(6):465-467. PubMed ID: 27614448 [No Abstract] [Full Text] [Related]
25. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research. Fujita T; Fujii H Int J Mol Sci; 2015 Sep; 16(10):23143-64. PubMed ID: 26404236 [TBL] [Abstract][Full Text] [Related]
26. CRISPR-Cas13 Inhibitors Block RNA Editing in Bacteria and Mammalian Cells. Lin P; Qin S; Pu Q; Wang Z; Wu Q; Gao P; Schettler J; Guo K; Li R; Li G; Huang C; Wei Y; Gao GF; Jiang J; Wu M Mol Cell; 2020 Jun; 78(5):850-861.e5. PubMed ID: 32348779 [TBL] [Abstract][Full Text] [Related]
27. Repurposing type I-F CRISPR-Cas system as a transcriptional activation tool in human cells. Chen Y; Liu J; Zhi S; Zheng Q; Ma W; Huang J; Liu Y; Liu D; Liang P; Songyang Z Nat Commun; 2020 Jun; 11(1):3136. PubMed ID: 32561716 [TBL] [Abstract][Full Text] [Related]
28. CRISPR technologies for bacterial systems: Current achievements and future directions. Choi KR; Lee SY Biotechnol Adv; 2016 Nov; 34(7):1180-1209. PubMed ID: 27566508 [TBL] [Abstract][Full Text] [Related]
29. Energy biotechnology in the CRISPR-Cas9 era. Estrela R; Cate JH Curr Opin Biotechnol; 2016 Apr; 38():79-84. PubMed ID: 26874259 [TBL] [Abstract][Full Text] [Related]
30. An overview of applications of CRISPR-Cas technologies in biomedical engineering. Jamehdor S; Zaboli KA; Naserian S; Thekkiniath J; Omidy HA; Teimoori A; Johari B; Taromchi AH; Sasano Y; Kaboli S Folia Histochem Cytobiol; 2020; 58(3):163-173. PubMed ID: 32978771 [TBL] [Abstract][Full Text] [Related]
31. Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Yan WX; Chong S; Zhang H; Makarova KS; Koonin EV; Cheng DR; Scott DA Mol Cell; 2018 Apr; 70(2):327-339.e5. PubMed ID: 29551514 [TBL] [Abstract][Full Text] [Related]
32. Commentary - CRISPR-based techniques: Cas9, Cas13 and their applications in the era of COVID-19. Zaami S; Piergentili R; Marinelli E; Montanari Vergallo G Eur Rev Med Pharmacol Sci; 2021 Feb; 25(3):1752-1761. PubMed ID: 33629345 [TBL] [Abstract][Full Text] [Related]
33. Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems. Davidson AR; Lu WT; Stanley SY; Wang J; Mejdani M; Trost CN; Hicks BT; Lee J; Sontheimer EJ Annu Rev Biochem; 2020 Jun; 89():309-332. PubMed ID: 32186918 [TBL] [Abstract][Full Text] [Related]
34. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis. Hong KQ; Liu DY; Chen T; Wang ZW World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229 [TBL] [Abstract][Full Text] [Related]
35. The genome editing revolution: A CRISPR-Cas TALE off-target story. Stella S; Montoya G Bioessays; 2016 Jul; 38 Suppl 1():S4-S13. PubMed ID: 27417121 [TBL] [Abstract][Full Text] [Related]
36. CRISPR-Cas9 Genome Editing for Treatment of Atherogenic Dyslipidemia. Chadwick AC; Musunuru K Arterioscler Thromb Vasc Biol; 2018 Jan; 38(1):12-18. PubMed ID: 28838920 [TBL] [Abstract][Full Text] [Related]
37. The Expanding Class 2 CRISPR Toolbox: Diversity, Applicability, and Targeting Drawbacks. Hajizadeh Dastjerdi A; Newman A; Burgio G BioDrugs; 2019 Oct; 33(5):503-513. PubMed ID: 31385197 [TBL] [Abstract][Full Text] [Related]
38. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. Malone LM; Warring SL; Jackson SA; Warnecke C; Gardner PP; Gumy LF; Fineran PC Nat Microbiol; 2020 Jan; 5(1):48-55. PubMed ID: 31819217 [TBL] [Abstract][Full Text] [Related]
39. Functional Features and Current Applications of the RNA-Targeting Type VI CRISPR-Cas Systems. PerĨulija V; Lin J; Zhang B; Ouyang S Adv Sci (Weinh); 2021 Jul; 8(13):2004685. PubMed ID: 34254038 [TBL] [Abstract][Full Text] [Related]
40. CRISPR-Cas9 system: A new-fangled dawn in gene editing. Gupta D; Bhattacharjee O; Mandal D; Sen MK; Dey D; Dasgupta A; Kazi TA; Gupta R; Sinharoy S; Acharya K; Chattopadhyay D; Ravichandiran V; Roy S; Ghosh D Life Sci; 2019 Sep; 232():116636. PubMed ID: 31295471 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]