BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 32046221)

  • 1. Flavonoids as Novel Efflux Pump Inhibitors and Antimicrobials Against Both Environmental and Pathogenic Intracellular Mycobacterial Species.
    Solnier J; Martin L; Bhakta S; Bucar F
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32046221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial and Efflux Pump Inhibitory Activity of Carvotacetones from
    Tran HT; Solnier J; Pferschy-Wenzig EM; Kunert O; Martin L; Bhakta S; Huynh L; Le TM; Bauer R; Bucar F
    Antibiotics (Basel); 2020 Jul; 9(7):. PubMed ID: 32650510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis.
    Lechner D; Gibbons S; Bucar F
    J Antimicrob Chemother; 2008 Aug; 62(2):345-8. PubMed ID: 18430720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethidium bromide transport across Mycobacterium smegmatis cell-wall: correlation with antibiotic resistance.
    Rodrigues L; Ramos J; Couto I; Amaral L; Viveiros M
    BMC Microbiol; 2011 Feb; 11():35. PubMed ID: 21332993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Farnesol, a potential efflux pump inhibitor in Mycobacterium smegmatis.
    Jin J; Zhang JY; Guo N; Sheng H; Li L; Liang JC; Wang XL; Li Y; Liu MY; Wu XP; Yu L
    Molecules; 2010 Oct; 15(11):7750-62. PubMed ID: 21042264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Mycobacterial Efflux Pump EfpA Can Induce High Drug Tolerance to Many Antituberculosis Drugs, Including Moxifloxacin, in Mycobacterium smegmatis.
    Rai D; Mehra S
    Antimicrob Agents Chemother; 2021 Oct; 65(11):e0026221. PubMed ID: 34424047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of rifampicin by Mycobacterium aurum, Mycobacterium smegmatis and Mycobacterium tuberculosis.
    Piddock LJ; Williams KJ; Ricci V
    J Antimicrob Chemother; 2000 Feb; 45(2):159-65. PubMed ID: 10660497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Putative mycobacterial efflux inhibitors from the seeds of Aframomum melegueta.
    Gröblacher B; Maier V; Kunert O; Bucar F
    J Nat Prod; 2012 Jul; 75(7):1393-9. PubMed ID: 22789014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring Efflux and Permeability in Mycobacteria.
    Rodrigues L; Aínsa JA; Viveiros M
    Methods Mol Biol; 2021; 2314():231-245. PubMed ID: 34235655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioridazine and chlorpromazine inhibition of ethidium bromide efflux in Mycobacterium avium and Mycobacterium smegmatis.
    Rodrigues L; Wagner D; Viveiros M; Sampaio D; Couto I; Vavra M; Kern WV; Amaral L
    J Antimicrob Chemother; 2008 May; 61(5):1076-82. PubMed ID: 18310137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistance modulatory and efflux-inhibitory activities of capsaicinoids and capsinoids.
    Prasch S; Duran AG; Chinchilla N; Molinillo JMG; Macías FA; Bucar F
    Bioorg Chem; 2019 Feb; 82():378-384. PubMed ID: 30428416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial efflux inhibitors are widely distributed in land plants.
    Brown AR; Ettefagh KA; Todd DA; Cole PS; Egan JM; Foil DH; Lacey EP; Cech NB
    J Ethnopharmacol; 2021 Mar; 267():113533. PubMed ID: 33137433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring efflux and permeability in mycobacteria.
    Rodrigues L; Viveiros M; Aínsa JA
    Methods Mol Biol; 2015; 1285():227-39. PubMed ID: 25779319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efflux Pump Inhibition and Resistance Modulation in
    Šimunović K; Solnier J; Alperth F; Kunert O; Smole Možina S; Bucar F
    Antibiotics (Basel); 2021 Sep; 10(9):. PubMed ID: 34572657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria.
    Padwal P; Bandyopadhyaya R; Mehra S
    Langmuir; 2014 Dec; 30(50):15266-76. PubMed ID: 25375643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The plant alkaloid piperine as a potential inhibitor of ethidium bromide efflux in Mycobacterium smegmatis.
    Jin J; Zhang J; Guo N; Feng H; Li L; Liang J; Sun K; Wu X; Wang X; Liu M; Deng X; Yu L
    J Med Microbiol; 2011 Feb; 60(Pt 2):223-229. PubMed ID: 21051548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifications on C6 and C7 Positions of 3-Phenylquinolone Efflux Pump Inhibitors Led to Potent and Safe Antimycobacterial Treatment Adjuvants.
    Felicetti T; Machado D; Cannalire R; Astolfi A; Massari S; Tabarrini O; Manfroni G; Barreca ML; Cecchetti V; Viveiros M; Sabatini S
    ACS Infect Dis; 2019 Jun; 5(6):982-1000. PubMed ID: 30907573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and biological evaluation of NAS-21 and NAS-91 analogues as potential inhibitors of the mycobacterial FAS-II dehydratase enzyme Rv0636.
    Bhowruth V; Brown AK; Besra GS
    Microbiology (Reading); 2008 Jul; 154(Pt 7):1866-1875. PubMed ID: 18599816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis.
    Li XZ; Zhang L; Nikaido H
    Antimicrob Agents Chemother; 2004 Jul; 48(7):2415-23. PubMed ID: 15215089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, Synthesis, and Evaluation of Novel Hybrid Efflux Pump Inhibitors for Use against Mycobacterium tuberculosis.
    Kumar M; Singh K; Naran K; Hamzabegovic F; Hoft DF; Warner DF; Ruminski P; Abate G; Chibale K
    ACS Infect Dis; 2016 Oct; 2(10):714-725. PubMed ID: 27737555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.